Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/56633
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review
Title

Coupled CO 2 and O 2-driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System

AuthorsMayol, Eva CSIC; Ruiz-Halpern, Sergio CSIC ORCID; Duarte, Carlos M. CSIC ORCID; Castilla, Juan Carlos; Pelegrí, Josep Lluís CSIC ORCID
Issue Date2012
PublisherEuropean Geosciences Union
CitationBiogeosciences 9: 1183- 1194 (2012)
AbstractCarbon dioxide and coupled CO 2 and O 2-driven compromises to marine life were examined along the Chilean sector of the Humboldt Current System, a particularly vulnerable hypoxic and upwelling area, applying the Respiration index (RI = log 10 pO 2/pCO 2 ) and the pH-dependent aragonite saturation (Ω) to delineate the water masses where aerobic and calcifying organisms are stressed. As expected, there was a strong negative relationship between oxygen concentration and pH or pCO 2 in the studied area, with the subsurface hypoxic Equatorial Subsurface Waters extending from 100m to about 300m depth and supporting elevated pCO 2 values. The lowest RI values, associated to aerobic stress, were found at about 200m depth and decreased towards the Equator. Increased pCO 2 in the hypoxic water layer reduced the RI values by as much as 0.59 RI units, with the thickness of the upper water layer that presents conditions suitable for aerobic life (RI>0.7) declining by half between 42°S and 28°S. The intermediate waters hardly reached those stations closer to the equator so that the increased pCO 2 lowered pH and the saturation of aragonite. A significant fraction of the water column along the Chilean sector of the Humboldt Current System suffers from CO 2-driven compromises to biota, including waters corrosive to calcifying organisms, stress to aerobic organisms or both. The habitat free of CO 2-driven stresses was restricted to the upper mixed layer and to small water parcels at about 1000m depth. Overall pCO 2 acts as a hinge connecting respiratory and calcification challenges expected to increase in the future, resulting in a spread of the challenges to aerobic organisms. © Author(s) 2012.
URIhttp://hdl.handle.net/10261/56633
DOI10.5194/bg-9-1183-2012
Identifiersdoi: 10.5194/bg-9-1183-2012
issn: 1726-4170
Appears in Collections:(IMEDEA) Artículos
(ICM) Artículos




Files in This Item:
File Description SizeFormat
Coupled CO 2 and O 2-driven compromises.pdf10,34 MBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

SCOPUSTM   
Citations

21
checked on Apr 21, 2024

WEB OF SCIENCETM
Citations

19
checked on Feb 26, 2024

Page view(s)

364
checked on Apr 24, 2024

Download(s)

245
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.