Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/56354
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review
Title

Dual Neofunctionalization of a Rapidly Evolving Aquaporin-1 Paralog Resulted in Constrained and Relaxed Traits Controlling Channel Function during Meiosis Resumption in Teleosts

AuthorsZapater, Cinta CSIC ORCID ; Chauvigné, François CSIC ORCID; Norberg, Birgitta; Finn, Roderick N.; Cerdà, Joan CSIC ORCID
KeywordsAquaporins
Oocyte
Meiosis
Hydration
Yolk
Neofunctionalization
Issue DateJun-2011
PublisherOxford University Press
CitationMolecular Biology and Evolution 28(11): 3151-3169 (2011)
AbstractThe preovulatory hydration of teleost oocytes is a unique process among vertebrates. The hydration mechanism is most pronounced in marine acanthomorph teleosts that spawn pelagic (floating) eggs; however, the molecular pathway for water influx remains poorly understood. Recently, we revealed that whole-genome duplication (WGD) resulted in teleosts harboring the largest repertoire of molecular water channels in the vertebrate lineage and that a duplicated aquaporin-1 paralog is implicated in the oocyte hydration process. However, the origin and function of the aquaporin-1 paralogs remain equivocal. By integrating the molecular phylogeny with synteny and structural analyses, we show here that the teleost aqp1aa and -1ab paralogs (previously annotated as aqp1a and -1b, respectively) arose by tandem duplication rather than WGD and that the Aqp1ab C-terminus is the most rapidly evolving subdomain within the vertebrate aquaporin superfamily. The functional role of Aqp1ab was investigated in Atlantic halibut, a marine acanthomorph teleost that spawns one of the largest pelagic eggs known. We demonstrate that Aqp1ab is required for full hydration of oocytes undergoing meiotic maturation. We further show that the rapid structural divergence of the C-terminal regulatory domain causes ex vivo loss of function of halibut Aqp1ab when expressed in amphibian oocytes but not in zebrafish or native oocytes. However, by using chimeric constructs of halibut Aqp1aa and -1ab and antisera specifically raised against the C-terminus of Aqp1ab, we found that this cytoplasmic domain regulates in vivo trafficking to the microvillar portion of the oocyte plasma membrane when intraoocytic osmotic pressure is at a maximum. Interestingly, by coinjecting polyA+ mRNA from postvitellogenic halibut follicles, ex vivo intracellular trafficking of Aqp1ab is rescued in amphibian oocytes. These data reveal that the physiological role of Aqp1ab during meiosis resumption is conserved in teleosts, but the remarkable degeneracy of the cytoplasmic domain has resulted in alternative regulation of the trafficking mechanism
Description19 pages, 7 figures, 1 table
Publisher version (URL)https://doi.org/10.1093/molbev/msr146
URIhttp://hdl.handle.net/10261/56354
DOI10.1093/molbev/msr146
ISSN0737-4038
E-ISSN1537-1719
Appears in Collections:(ICM) Artículos
(CRAG) Artículos




Files in This Item:
File Description SizeFormat
Zapater et al_2011.pdf2,68 MBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

SCOPUSTM   
Citations

41
checked on Apr 20, 2024

WEB OF SCIENCETM
Citations

34
checked on Feb 24, 2024

Page view(s)

425
checked on Apr 23, 2024

Download(s)

277
checked on Apr 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.