English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/53812
Compartir / Impacto:
Título : Wound-up phase turbulence in the complex Ginzburg-Landau equation
Autor : Montagne, Raúl; Hernández-García, Emilio ; Amengual, Pau; San Miguel, Maxi
Fecha de publicación : 1997
Editor: American Physical Society
Citación : Physical Review E- Statistical, Nonlinear, and Soft Matter Physics 56: 151-167 (1997)
Resumen: We consider phase turbulent regimes with nonzero winding number in the one-dimensional complex Ginzburg-Landau equation. We find that phase turbulent states with winding number larger than a critical one are only transients and decay to states within a range of allowed winding numbers. The analogy with the Eckhaus instability for nonturbulent waves is stressed. The transition from phase to defect turbulence is interpreted as an ergodicity breaking transition that occurs when the range of allowed winding numbers vanishes. We explain the states reached at long times in terms of three basic states, namely, quasiperiodic states, frozen turbulence states, and riding turbulence states. Justification and some insight into them are obtained from an analysis of a phase equation for nonzero winding number: Rigidly moving solutions of this equation, which correspond to quasiperiodic and frozen turbulence states, are understood in terms of periodic and chaotic solutions of an associated system of ordinary differential equations. A short report of some of our results has already been published [R. Montagne et al., Phys. Rev. Lett. 77, 267 (1996)].
URI : http://hdl.handle.net/10261/53812
DOI: 10.1103/PhysRevE.56.151
Identificadores: doi: 10.1103/PhysRevE.56.151
issn: 1063-651X
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Wound-up.pdf845,24 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.