English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/53572
Title: Defect-freezing and defect-unbinding in the Vector Complex Ginzburg-Landau equation
Authors: Hoyuelos, Miguel; Hernández-García, Emilio; Colet, Pere; San Miguel, Maxi
Issue Date: 1999
Publisher: Elsevier
Citation: Computer Physics Communications 121: 414-419 (1999)
Abstract: We describe the dynamical behavior found in numerical solutions of the Vector Complex Ginzburg-Landau equation in parameter values where plane waves are stable. Topological defects in the system are responsible for a rich behavior. At low coupling between the vector components, a frozen phase is found, whereas a gas-like phase appears at higher coupling. The transition is a consequence of a defect unbinding phenomena. Entropy functions display a characteristic behavior around the transition.
URI: http://hdl.handle.net/10261/53572
Identifiers: doi: 10.1016/S0010-4655(99)00371-9
issn: 0010-4655
DOI: 10.1016/S0010-4655(99)00371-9
Appears in Collections:(IMEDEA) Artículos
Files in This Item:
File Description SizeFormat 
defect-freezing.pdf181,01 kBAdobe PDFThumbnail
Show full item record

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.