English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/53232
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats

AuthorsSalazar, Nuria ; Binetti, Ana; Gueimonde Fernández, Miguel ; Alonso, Ana ; Garrido, Pablo; González del Rey, Camen; González, Celestino; Ruas-Madiedo, Patricia ; González de los Reyes-Gavilán, Clara
Wistar rats
Intestinal microbiota
Issue Date5-Jan-2011
CitationInternational Journal of Food Microbiology 144(3): 342-351 (2011)
AbstractBifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 strains were tested for their safety and ability to modulate the intestinal microbiota in vivo. Chemically simulated gastrointestinal digestion showed considerably lower survival of E44 than R1 strain, the first microorganism also being more sensitive to refrigerated storage in 10% skimmed milk at 4°C. Harmful glycosidic activities were absent, or at low levels, in the strains R1 and E44. Both strains were sensitive to most antibiotics and resistant to aminoglycosides, a common feature in bifidobacteria. Similar to several other bifidobacteria strains, B. animalis subsp. lactis IPLA R1 displayed a moderate resistance against tetracycline which correlated with the presence of tet(W) gene in its genome. The general parameters indicating well-being status, as well as translocation to different organs and histological examination of the gut tissues, revealed no changes induced by the administration of bifidobacteria to rats. Twelve-week-old male Wistar rats were distributed into three groups, eight rats in each. Two groups were administered daily over 108cfu of the corresponding strain suspended in 10% skimmed milk for 24days, whereas rats in the placebo group received skimmed milk without microorganisms added. The microbiota and short chain fatty acids (SCFA) were monitored in faeces at different time points during treatment and in caecum content at the end of the assay. Quantitative PCR (qPCR) showed that faecal and caecal Bifidobacterium levels were higher in bifidobacteria-fed rats than in the placebo rats at the end of the intervention, whereas total anaerobic plate counts did not show significant differences. Quantification of B. animalis and B. longum by qPCR showed that, independent of the microorganism administered, treatment with bifidobacteria resulted in higher levels of B. animalis in the caecum. PCR-DGGE analysis of microbial populations revealed a higher diversity of bands in caecum content of rats fed B. animalis IPLA R1 than in the placebo group and rats fed B. longum IPLA E44. Remarkably, although no variations in the proportion of acetate, propionate and butyrate were found, at the end of the assay the total SCFA concentration in the faeces of rats fed bifidobacteria was significantly higher and those in caecum content significantly lower, than that of the placebo group. This suggests a displacement of the SCFA production to parts of the colon beyond the caecum in rats receiving bifidobacteria. Therefore, the oral administration of B. animalis IPLA R1 and B. longum E44 can be considered safe, these microorganisms having the ability to modulate the intestinal microbiota of rats by influencing SCFA and the bifidobacterial population levels. © 2010 Elsevier B.V.
Identifiersdoi: 10.1016/j.ijfoodmicro.2010.10.016
issn: 0168-1605
Appears in Collections:(IPLA) Artículos
Files in This Item:
File Description SizeFormat 
Salazar et al. IJFM2011 Post Print.pdf156,49 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.