DSpace

Digital.CSIC > Biología y Biomedicina > Instituto de Biología Molecular de Barcelona (IBMB) > (IBMB) Artículos >

Share

EndNote

Impact

Closed Access item Matrix metalloproteinases: Fold and function of their catalytic domains

Authors:Tallant, Cynthia
Marrero, Aniebrys
Gomis-Rüth, F. Xavier
Issue Date:2010
Publisher:Elsevier
Citation:BBA - Molecular Cell Research 1803: 20-28 (2010)
Abstract:Matrix metalloproteinases (MMPs) are zinc-dependent protein and peptide hydrolases. They have been almost exclusively studied in vertebrates and 23 paralogs are present in humans. They are widely involved in metabolism regulation through both extensive protein degradation and selective peptide-bond hydrolysis. If MMPs are not subjected to exquisite spatial and temporal control, they become destructive, which can lead to pathologies such as arthritis, inflammation, and cancer. The main therapeutic strategy to combat the dysregulation of MMPs is the design of drugs to target their catalytic domains, for which purpose detailed structural knowledge is essential. The catalytic domains of 13 MMPs have been structurally analyzed so far and they belong to the >metzincin> clan of metalloendopeptidases. These compact, spherical, ~165-residue molecules are divided by a shallow substrate-binding crevice into an upper and a lower sub-domain. The molecules have an extended zinc-binding motif, HEXXHXXGXXH, which contains three zinc-binding histidines and a glutamate that acts as a general base/acid during catalysis. In addition, a conserved methionine lying within a >Met-turn> provides a hydrophobic base for the zinc-binding site. Further earmarks of MMPs are three α-helices and a five-stranded β-sheet, as well as at least two calcium sites and a second zinc site with structural functions. Most MMPs are secreted as inactive zymogens with an N-terminal ~80-residue pro-domain, which folds into a three-helix globular domain and inhibits the catalytic zinc through a cysteine imbedded in a conserved motif, PRCGXPD. Removal of the pro-domain enables access of a catalytic solvent molecule and substrate molecules to the active-site cleft, which harbors a hydrophobic S1&core;-pocket as main determinant of specificity. Together with the catalytic zinc ion, this pocket has been targeted since the onset of drug development against MMPs. However, the inability of first- and second-generation inhibitors to distinguish between different MMPs led to failures in clinical trials. More recent approaches have produced highly specific inhibitors to tackle selected MMPs, thus anticipating the development of more successful drugs in the near future. Further strategies should include the detailed structural characterization of the remaining ten MMPs to assist in achieving higher drug selectivity. In this review, we discuss the general architecture of MMP catalytic domains and its implication in function, zymogenic activation, and drug design. © 2009 Elsevier B.V.
URI:http://hdl.handle.net/10261/53177
Identifiers:doi: 10.1016/j.bbamcr.2009.04.003
issn: 0167-4889
Appears in Collections:(IBMB) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.