English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/53119
Title: Manganese(II) Butyrate-Based MOFs: Structures, Thermal and Magnetic Properties
Authors: Martínez Casado, F. J.; Fabelo, Oscar; Rodríguez-Velamazán, J. A.; Rodríguez-Blanco, C.; Campo, Javier; Sánchez-Alarcos, V.
Issue Date: 2011
Publisher: American Chemical Society
Citation: Crystal Growth and Design 11(9): 4080-4089 (2011)
Abstract: In the quest for new synthetic strategies for designing new magnetic metal-organic frameworks, two manganese(II) butyrate-based compounds have been synthesized and characterized for the first time. Both compounds have been studied in depth by single crystal X-ray diffraction and powder neutron diffraction, thermogravimetric analysis, differential scanning calorimetry, SQUID magnetometry, and FTIR spectroscopy. The structures of both compounds are different from the typical lamellar one of most of metal alkanoates. The first one (hexamanganese(II) hydroxy undecabutanoate) presents an isostructural solid-to-solid transition at low temperature, with a packing of corrugated layers (2D coordination polymer) in a monoclinic unit cell (P2(1)/n), while the other one (diaqua pentamanganese(II) decabutanoate) shows a 3D framework in a cubic lattice (Ia-3). The magnetic properties of both systems reveal the existence of an overall antiferromagnetic interaction involving an extensive exchange coupling network These polynuclear complexes show that short metal alkanoates of transition metals, or even, mixed ligand complexes could be a way to design compounds with interesting properties (magnetic, porous, ...).
URI: http://hdl.handle.net/10261/53119
Identifiers: doi: 10.1021/cg200649n
issn: 1528-7483
e-issn: 1528-7505
DOI: 10.1021/cg200649n
Appears in Collections:(IACT) Artículos
(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.