Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/52339
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Strain balanced epitaxial stacks of quantum dots and quantum posts

AutorAlonso-Álvarez, Diego CSIC; Ripalda, José María CSIC ORCID ; Alén, Benito CSIC ORCID; Llorens Montolio, José Manuel CSIC ORCID; Rivera de Mena, Antonio CSIC ORCID; Briones Fernández-Pola, Fernando CSIC
Fecha de publicación23-nov-2011
EditorUnited Nations Industrial Development Organization
CitaciónAdvanced Materials 23(44): 5256-5261 (2011)
ResumenThe self assembly of quantum dots by heteroepitaxy of lattice-mismatched semiconductors is based on elastic energy relaxation, which spontaneously occurs at the growth front when the largest atoms in the crystal cluster together. Because a larger covalent radius is related to weaker bonds, and this is in turn fundamentally related to smaller bandgaps, the formation of quantum dots leads to a confinement potential for electrons and/or holes. This effect has applications ranging from ultralow threshold diode lasers to highly efficient solar cells and usually requires the stacking of multiple quantum dots. The number of layers is limited by the stress accumulated during growth due to the larger covalent radius of the atoms that constitute the quantum dots. This accumulated stress can be relieved by introducing in the epitaxial layers compensating atomic species with a smaller covalent radius, enabling a reduction of spacer layer thickness. In the limit of sub-nanometer spacer thickness, the quantum dots, which have a tendency to line up vertically, fuse into a quantum post. The current efforts to optimize the properties of strain balanced quantum dot stacks and quantum posts are reviewed. The stacking of self-assembled epitaxial quantum dots with sub-nanometer spacer layers leads to the formation of quasi-1D nanostructures or quantum posts (QP). Using a matrix material with a small lattice parameter for strain compensation, the length of the QPs can be increased upwards of 100 nm. The resulting anisotropic strain field favors the luminescence emitted with dominant transverse magnetic component in the [1-10] direction. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Versión del editorhttp://dx.doi.org/10.1002/adma.201101639
URIhttp://hdl.handle.net/10261/52339
DOI10.1002/adma.201101639
Identificadoresissn: 0935-9648
Aparece en las colecciones: (IMN-CNM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
strain_balanced.pdf641,15 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

20
checked on 31-mar-2024

WEB OF SCIENCETM
Citations

19
checked on 26-feb-2024

Page view(s)

323
checked on 22-abr-2024

Download(s)

308
checked on 22-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.