DSpace

Digital.CSIC > Ciencia y Tecnologías Físicas > Instituto de Física de Cantabria (IFCA) > (IFCA) Artículos >

Share

EndNote

Impact

Open Access item Joint Bayesian separation and restoration of cosmic microwave background from convolutional mixtures

Authors:Kayabol, K
Sanz, J. L.
Herranz, D.
Kuruoglu, E. E.
Salerno, E.
Issue Date:2011
Publisher:Wiley-Blackwell
Citation:Monthly Notices of the Royal Astronomical Society 415(2): 1334-1342 (2011)
Abstract:We propose a Bayesian approach to joint source separation and restoration for astrophysical diffuse sources. We constitute a prior statistical model for the source images by using their gradient maps. We assume a t-distribution for the gradient maps in different directions, because it is able to fit both smooth and sparse data. A Monte Carlo technique, called Langevin sampler, is used to estimate the source images and all the model parameters are estimated by using deterministic techniques.
URI:http://hdl.handle.net/10261/51966
Identifiers:doi: 10.1111/j.1365-2966.2011.18783.x
issn: 0035-8711
e-issn: 1365-2966
Appears in Collections:(IFCA) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.