DSpace

Digital.CSIC > Ciencia y Tecnología de Alimentos > Instituto de Productos Lácteos de Asturias (IPLA) > (IPLA) Artículos >

Share

EndNote

Impact

Open Access item Comparative phenotypic and molecular genetic profiling of wild Lactococcus lactis subsp. lactis strains of the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes, isolated from starter-free cheeses made of raw milk

Authors:Fernández, Elena
Alegría, Ángel
Delgado, Susana
Martín, M. Cruz
Mayo Pérez, Baltasar
Issue Date:Aug-2011
Publisher:American Society for Microbiology
Citation:Applied and Environmental Microbiology 77(15): 5324-5335 (2011)
Abstract:Twenty Lactococcus lactis strains with an L. lactis subsp. lactis phenotype isolated from five traditional cheeses made of raw milk with no added starters belonging to the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes (lactis and cremoris genotypes, respectively; 10 strains each) were subjected to a series of phenotypic and genetic typing methods, with the aims of determining their phylogenetic relationships and suitability as starters. Pulsed-field gel electrophoresis (PFGE) analysis of intact genomes digested with SalI and SmaI proved that all strains were different except for three isolates of the cremoris genotype, which showed identical PFGE profiles. Multilocus sequence typing (MLST) analysis using internal sequences of seven loci (namely, atpA, rpoA, pheS, pepN, bcaT, pepX, and 16S rRNA gene) revealed considerable intergenotype nucleotide polymorphism, although deduced amino acid changes were scarce. Analysis of the MLST data for the present strains and others from other dairy and nondairy sources showed that all of them clustered into the cremoris or lactis genotype group, by using both independent and combined gene sequences. These two groups of strains also showed distinctive carbohydrate fermentation and enzyme activity profiles, with the strains in the cremoris group showing broader profiles. However, the profiles of resistance/susceptibility to 16 antibiotics were very similar, showing no atypical resistance, except for tetracycline resistance in three identical cremoris genotype isolates. The numbers and concentrations of volatile compounds produced in milk by the strains belonging to these two groups were clearly different, with the cremoris genotype strains producing higher concentrations of more branched-chain, derived compounds. Together, the present results support the idea that the lactis and cremoris genotypes of phenotypic Lactococcus lactis subsp. lactis actually represent true subspecies. Some strains of the two subspecies in this study appear to be good starter candidates. © 2011, American Society for Microbiology.
Publisher version (URL):http://dx.doi.org/10.1128/AEM.02991-10
URI:http://hdl.handle.net/10261/51471
Identifiers:doi: 10.1128/AEM.02991-10
issn: 0099-2240
Appears in Collections:(IPLA) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.