DSpace

Digital.CSIC > Ciencia y Tecnología de Materiales > Centro de Investigación en Nanociencia y Nanotecnología (CIN2) > (CIN2) Artículos >

Share

EndNote

Impact

Closed Access item Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte

Authors:Moreno, Mabel
Quijada, R.
Santa Ana, María Angélica
Benavente, Eglantina
Gómez-Romero, P.
González, Guillermo
Issue Date:2011
Publisher:Elsevier
Citation:Electrochimica Acta 58: 112-118 (2011)
Abstract:Solvent-free solid polymer electrolytes (SPEs) based on two different poly(ethylene oxide), PEO Mw 600,000 and 4,000,000 and intercalated clays are reported. The inorganic additives used were lithiated bentonite and the nanocomposite PEO@bentonite with the same polymer used as matrix. SPE films, obtained in the scale of grams by mixing the components in a Brabender-type batch mixer and molding at 130 C, were characterized by X-ray diffraction analysis, UV-vis spectroscopy, and thermal analysis. During the preparation of the films, the unmodified clay got intercalated in situ. Comparative analysis of ionic conductivity and mechanical properties of the films show that the conductivity increases with the inclusion of fillers, especially for the polymer with low molecular weight. This effect is more pronounced when using PEO@bentonite as additive. Under selected work conditions, avoiding the presence of crystalline lithium complexes, observed effects are mainly centered on the polymer. An explanation, considering the higher affinity between the modified clay and PEO matrix which leads to differences in the micro homogeneity degree between both types of polymer electrolytes is proposed. © 2011 Elsevier Ltd. All rights reserved.
URI:http://hdl.handle.net/10261/50962
Identifiers:doi: 10.1016/j.electacta.2011.08.096
issn: 0013-4686
Appears in Collections:(CIN2) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.