English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/50797
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

181-196 Quantifying the evolutionary divergence of protein structures: The role of function change and function conservation

AuthorsPascual-García, Alberto ; Abia, David ; Méndez, Raúl ; Nido, Gonzalo S. ; Bastolla, Ugo
Issue Date2010
PublisherWiley-Liss
CitationProteins: Structure, Function and Genetics 78: 181-196 (2010)
AbstractThe molecular clock hypothesis, stating that protein sequences diverge in evolution by accumulating amino acid substitutions at an almost constant rate, played a major role in the development of molecular evolution and boosted quantitative theories of evolutionary change. These studies were extended to protein structures by the seminal paper by Chothia and Lesk, which established the approximate proportionality between structure and sequence divergence. Here we analyse how function influences the relationship between sequence and structure divergence, studying four large superfamilies of evolutionarily related proteins: globins, aldolases, P-loop and NADP-binding. We introduce the contact divergence, which is more consistent with sequence divergence than previously used structure divergence measures. Our main findings are: (1) Small structure and sequence divergences are proportional, consistent with the molecular clock. Approximate validity of the clock is also supported by the analysis of the clustering coefficient of structure similarity networks. (2) Functional constraints strongly limit the structure divergence of proteins performing the same function and may allow to identify incomplete or wrong functional annotations. (3) The rate of structure versus sequence divergence is larger for proteins performing different functions than for proteins performing the same function. We conjecture that this acceleration is due to positive selection for new functions. Accelerations in structure divergence are also suggested by the analysis of the clustering coefficient. (4) For low sequence identity, structural diversity explodes. We conjecture that this explosion is related to functional diversification. (5) Large indels are almost always associated with function changes. © 2009 Wiley-Liss, Inc.
URIhttp://hdl.handle.net/10261/50797
DOI10.1002/prot.22616
Identifiersdoi: 10.1002/prot.22616
issn: 0887-3585
Appears in Collections:(CBM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.