English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/50407
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Interface effects on Gd induced disordering of Co films on Pt(111)

AuthorsQuirós, Carlos ; Díaz, Javier; Ferrer, S.
Issue Date2012
PublisherElsevier
CitationSurface Science 606: 933-937 (2012)
AbstractAmorphization of epitaxial Co thin films grown on top of a Pt(111) surface has been studied by surface X-ray diffraction after deposition of Gd overlayers. The results indicate strong differences of the disordering process depending on the thickness of the Co film. First basic difference is that thick Co films (15 atomic layers) are only partially amorphized by 4 atomic layers of Gd on top of them, whereas thinner Co films (5 atomic layers) are completely disordered by just 2 atomic layers of Gd. Moreover, amorphization by Gd overlayers induces different stress relaxation processes in both cases. For 15 atomic layers thick Co films a preferential amorphization of the more strained Co grains is observed, leading to an effective relaxation of about - 0.5% of the in-plane lattice parameter during amorphization, approaching its relaxed value. On the contrary, for 5 atomic layers thick Co films, the initial steps of disordering are accompanied by a stronger increase of the in-plane lattice constant, by about 1.4%, typical of Co-Pt interface alloy formation, followed by a complete amorphization. Furthermore, the magnetic characterization, carried out by magneto-optical Kerr effect and resonant magnetic surface X-ray diffraction, strongly supports that the amorphization of thin Co films is changing the nature of the Co/Pt interface. In particular, as Gd overlayers are deposited, and the amorphization proceeds, the structural disordering of the Co/Pt interface flips its characteristic perpendicular magnetic anisotropy toward in-plane orientation before the complete magnetic depolarization of the interface Pt atoms is reached. All these results confirm a marked dependence of amorphization processes on film thickness, which can be related to the enhanced influence of the nearby film/substrate interface. © 2012 Elsevier B.V. All rights reserved.
Descriptionet al.
URIhttp://hdl.handle.net/10261/50407
DOI10.1016/j.susc.2012.02.008
Identifiersdoi: 10.1016/j.susc.2012.02.008
issn: 0039-6028
Appears in Collections:(CINN) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.