DSpace

Digital.CSIC > Biología y Biomedicina > Centro de Investigaciones Biológicas (CIB) > (CIB) Artículos >

Share

EndNote

Impact

Closed Access item Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

Authors:Fernandez-Fueyo, Elena
Ruíz-Dueñas, Francisco Javier
Ferreira, Patricia
Martínez Ferrer, Ángel Tomás
Vicuña, Rafael
Cullen, Dan
Issue Date:4-Mar-2012
Publisher:National Academy of Sciences (U.S.)
Citation:Proceedings of the National Academy of Sciences 109(14): 5458-5463(2012)
Abstract:Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2+. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium
Description:6 páginas, 3 figuras, 3 tablas -- PAGS nros. 5458-5463 et al.
Publisher version (URL):http://dx.doi.org/10.1073/pnas.1119912109
URI:http://hdl.handle.net/10261/49199
ISSN:0027-8424
E-ISSNmetadata.dc.identifier.doi = DOI:1091-6490
???metadata.dc.identifier.doi???:10.1073/pnas.1119912109
Appears in Collections:(CIB) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.