Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/48394
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review
Title

Dynamic control for synchronization of separated cortical areas through thalamic relay

AuthorsGollo, Leonardo L.; Mirasso, Claudio R. CSIC ORCID ; Villa, Alessandro E. P.
KeywordsDynamic relaying
Thalamocortical circuit
Issue DateSep-2010
PublisherElsevier
CitationNeuroImage 52(3): 947–955 (1010)
AbstractBinding of features and information which are processed at different cortical areas is generally supposed to be achieved by synchrony despite the non-negligible delays between these areas. In this work we study the dynamics and synchronization properties of a simplified model of the thalamocortical circuit where different cortical areas are interconnected with a certain delay, that is longer than the internal time scale of the neurons. Using this simple model we find that the thalamus could serve as a central subcortical area that is able to generate zero-lag synchrony between distant cortical areas by means of dynamical relaying (Vicente et al., 2008). Our results show that the model circuit is able to generate fast oscillations in frequency ranges of the beta and gamma bands triggered by an external input to the thalamus formed by independent Poisson trains. We propose a control mechanism to turn “On” and “Off” the synchronization between cortical areas as a function of the relative rate of the external input fed into dorsal and ventral thalamic neuronal populations. The current results emphasize the hypothesis that the thalamus could control the dynamics of the thalamocortical functional networks enabling two separated cortical areas to be either synchronized (at zero-lag) or unsynchronized. This control may happen at a fast time scale, in agreement with experimental data, and without any need of plasticity or adaptation mechanisms which typically require longer time scales.
DescriptionTexto completo: copia de autor.
Publisher version (URL)http://dx.doi.org/10.1016/j.neuroimage.2009.11.058
URIhttp://hdl.handle.net/10261/48394
DOI10.1016/j.neuroimage.2009.11.058
ISSN1053-8119
Appears in Collections:(IFISC) Artículos




Files in This Item:
File Description SizeFormat
LyraMirassoVilla_Neuroimage09.pdf1,62 MBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

SCOPUSTM   
Citations

46
checked on Apr 20, 2024

WEB OF SCIENCETM
Citations

46
checked on Feb 19, 2024

Page view(s)

320
checked on Apr 22, 2024

Download(s)

398
checked on Apr 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.