DSpace

Digital.CSIC > Ciencia y Tecnologías Físicas > Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC) > (IFISC) Artículos >

Share

EndNote

Impact

Links

Closed Access item A biophysical model for modulation frequency encoding in the cochlear nucleus

Authors:Gollo, Leonardo L.
Mirasso, Claudio R.
Villa, Alessandro E. P.
Keywords:Dynamic relaying, Thalamocortical circuit
Issue Date:Sep-2010
Publisher:Elsevier
Citation:Journal of Physiology Paris 52(3): 947–955 (2010)
Abstract:Binding of features and information which are processed at different cortical areas is generally supposed to be achieved by synchrony despite the non-negligible delays between these areas. In this work we study the dynamics and synchronization properties of a simplified model of the thalamocortical circuit where different cortical areas are interconnected with a certain delay, that is longer than the internal time scale of the neurons. Using this simple model we find that the thalamus could serve as a central subcortical area that is able to generate zero-lag synchrony between distant cortical areas by means of dynamical relaying (Vicente et al., 2008). Our results show that the model circuit is able to generate fast oscillations in frequency ranges of the beta and gamma bands triggered by an external input to the thalamus formed by independent Poisson trains. We propose a control mechanism to turn “On” and “Off” the synchronization between cortical areas as a function of the relative rate of the external input fed into dorsal and ventral thalamic neuronal populations. The current results emphasize the hypothesis that the thalamus could control the dynamics of the thalamocortical functional networks enabling two separated cortical areas to be either synchronized (at zero-lag) or unsynchronized. This control may happen at a fast time scale, in agreement with experimental data, and without any need of plasticity or adaptation mechanisms which typically require longer time scales.
Publisher version (URL):http://dx.doi.org/10.1016/j.jphysparis.2009.11.014
URI:http://hdl.handle.net/10261/48189
ISSN:0928-4257
???metadata.dc.identifier.doi???:10.1016/j.jphysparis.2009.11.014
Appears in Collections:(IFISC) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.