Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/48065
Share/Impact:
Título : Analytical and Numerical Studies of Noise-induced Synchronization of Chaotic Systems
Autor : Toral, Raúl, Mirasso, Claudio R., Hernández-García, Emilio, Piro, Oreste
Palabras clave : Synchronization
Noise
Chaos
Fecha de publicación : 31-Aug-2001
Editor: American Institute of Physics
Citación : Chaos 11: 665-673 (2001)
Resumen: We study the effect that the injection of a common source of noise has on the trajectories of chaotic systems, addressing some contradictory results present in the literature. We present particular examples of one-dimensional maps and the Lorenz system, both in the chaotic region, and give numerical evidence showing that the addition of a common noise to different trajectories, which start from different initial conditions, leads eventually to their perfect synchronization. When synchronization occurs, the largest Lyapunov exponent becomes negative. For a simple map we are able to show this phenomenon analytically. Finally, we analyze the structural stability of the phenomenon.
Descripción : PACS: 05.45.Xt
Versión del editor: http://dx.doi.org/10.1063/1.1386397
URI : http://hdl.handle.net/10261/48065
ISSN: 10.1063/1.1386397
DOI: 10.1063/1.1386397
Citación : Chaos 11: 665-673 (2001)
Appears in Collections:(IMEDEA) Artículos

Files in This Item:
File Description SizeFormat 
analytical_numerical.pdf3,32 MBAdobe PDFView/Open
Show full item record
 
CSIC SFX LinksSFX Query


Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.