Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/48061
Share/Impact:
Título : Stable droplets and growth laws close to the modulational instability of a domain wall
Autor : Gomila, Damià, Colet, Pere, Giorgi, Gian Luca, San Miguel, Maxi
Fecha de publicación : 17-Oct-2001
Editor: American Physical Society
Citación : Physical Review Letters 87: 194101 (1-4) (2001)
Resumen: We consider the curvature driven dynamics of a domain wall separating two equivalent states in systems displaying a modulational instability of a flat front. An amplitude equation for the dynamics of the curvature close to the bifurcation point from growing to shrinking circular droplets is derived. We predict the existence of stable droplets with a radius R that diverges at the bifurcation point, where a curvature driven growth law R t t 1 4 is obtained. Our general analytical predictions, which are valid for a wide variety of systems including models of nonlinear optical cavities and reaction-diffusion systems, are illustrated in the parametrically driven complex Ginzburg-Landau equation.
Descripción : PACS numbers: 47.52. +j, 42.65.Sf, 47.20.Ky, 82.40.Bj
Versión del editor: http://dx.doi.org/10.1103/PhysRevLett.87.194101
URI : http://hdl.handle.net/10261/48061
ISSN: 0031-9007
DOI: 10.1103/PhysRevLett.87.194101
Appears in Collections:(IMEDEA) Artículos

Files in This Item:
File Description SizeFormat 
Stable_droplets.pdf130,53 kBAdobe PDFView/Open
Show full item record
 
CSIC SFX LinksSFX Query


Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.