DSpace

Digital.CSIC > Recursos Naturales > Instituto Mediterráneo de Estudios Avanzados (IMEDEA) > (IMEDEA) Artículos >

Share

EndNote

Impact

Open Access item Stable droplets and growth laws close to the modulational instability of a domain wall

Authors:Gomila, Damià
Colet, Pere
Giorgi, Gian Luca
San Miguel, Maxi
Issue Date:17-Oct-2001
Publisher:American Physical Society
Citation:Physical Review Letters 87: 194101 (1-4) (2001)
Abstract:We consider the curvature driven dynamics of a domain wall separating two equivalent states in systems displaying a modulational instability of a flat front. An amplitude equation for the dynamics of the curvature close to the bifurcation point from growing to shrinking circular droplets is derived. We predict the existence of stable droplets with a radius R that diverges at the bifurcation point, where a curvature driven growth law R t t 1 4 is obtained. Our general analytical predictions, which are valid for a wide variety of systems including models of nonlinear optical cavities and reaction-diffusion systems, are illustrated in the parametrically driven complex Ginzburg-Landau equation.
Description:PACS numbers: 47.52. +j, 42.65.Sf, 47.20.Ky, 82.40.Bj
Publisher version (URL):http://dx.doi.org/10.1103/PhysRevLett.87.194101
URI:http://hdl.handle.net/10261/48061
ISSN:0031-9007
???metadata.dc.identifier.doi???:10.1103/PhysRevLett.87.194101
Appears in Collections:(IMEDEA) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.