English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/47059
Title: Universal functions and exactly solvable chaotic systems
Authors: García-Nustes, M. A.; Hernández-García, Emilio ; Gonzalez, Jorge A.
Issue Date: 7-Nov-2008
Abstract: A universal differential equation is a nontrivial differential equation the solutions of which approximate to arbitrary accuracy any continuous function on any interval of the real line. On the other hand, there has been much interest in exactly solvable chaotic maps. An important problem is to generalize these results to continuous systems. Theoretical analysis would allow us to prove theorems about these systems and predict new phenomena. In the present paper we discuss the concept of universal functions and their relevance to the theory of universal differential equations. We present a connection between universal functions and solutions to chaotic systems. We will show the statistical independence between $X(t)$ and $X(t + \tau)$ (when $\tau$ is not equal to zero) and $X(t)$ is a solution to some chaotic systems. We will construct universal functions that behave as delta-correlated noise. We will construct universal dynamical systems with truly noisy solutions. We will discuss physically realizable dynamical systems with universal-like properties.
Description: pre-print: arXiv:0811.1179v1
Publisher version (URL): http://arxiv.org/abs/0811.1179
URI: http://hdl.handle.net/10261/47059
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
0811.1179v1.pdf415,28 kBAdobe PDFThumbnail
Show full item record

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.