DSpace

Digital.CSIC > Ciencia y Tecnologías Físicas > Instituto de Física de Cantabria (IFCA) > (IFCA) Artículos >

Share

EndNote

Impact

Open Access item Planck early results. XXV. Thermal dust in nearby molecular clouds

Authors:Barreiro, R. Belén
Herranz, D.
López-Caniego, M.
Martínez-González, Enrique
Vielva, P.
Keywords:Dust, extinction, ISM: structure, Evolution, Infrared: ISM, ISM: individual objects: Taurus-Auriga molecular cloud
Issue Date:Dec-2011
Publisher:EDP Sciences
Citation:Astronomy and Astrophysics 536: A25 (2011)
Abstract:Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around −7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 → 1 and J = 1 → 0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index β, and the dust optical depth at 250 μm τ250. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16 − 17 K in the diffuse regions to 13 − 14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T − β anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 μm per hydrogen atom τ250/NH. We report an increase of τ250/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles.
Description:18 páginas, 13 figuras, 1 tabla.-- Planck Collaboration: et al.
Publisher version (URL):http://dx.doi.org/10.1051/0004-6361/201116483
URI:http://hdl.handle.net/10261/46449
ISSN:0004-6361
E-ISSNmetadata.dc.identifier.doi = DOI:1432-0746
???metadata.dc.identifier.doi???:10.1051/0004-6361/201116483
Appears in Collections:(IFCA) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.