Digital.CSIC > Biología y Biomedicina > Centro de Investigaciones Biológicas (CIB) > (CIB) Artículos >




Closed Access item EPR parameters of amino acid radicals in P. eryngii versatile peroxidase and its W164Y variant computed at the QM/MM level

Authors:Bernini, Caterina
Pogni, Rebecca
Ruíz-Dueñas, Francisco Javier
Martínez Ferrer, Ángel Tomás
Basosi, Riccardo
Sinicropi, Adalgisa
Keywords:Chemical Structure, Chemistry, Electron Spin Resonance, Spectroscopy, Electron Spin Resonance, Enzymology, Free Radicals, Free Radical
Issue Date:2011
Publisher:Royal Society of Chemistry (Great Britain)
Citation:Physical Chemistry Chemical Physics 13: 5078–5098(2011)
Abstract:Quantum mechanics/molecular mechanics (QM/MM) methods, employing density functional theory (DFT), have been used to compute the electron paramagnetic resonance (EPR) parameters of tryptophan and tyrosyl radical intermediates involved in the catalytic cycle of Pleurotus eryngii versatile peroxidase (VP) and its W164Y variant, respectively. These radicals have been previously experimentally detected and characterized both in the two-electron and one-electron activated forms of the enzymes. In this work, the well-studied W164 radical in VP has been chosen for calibration purposes because its spectroscopic properties have been extensively studied by multifrequency EPR and ENDOR spectroscopies. Using a B3LYP/CHARMM procedure, appropriately accounting for electrostatic, such as hydrogen bonding, and steric environmental interactions, a good agreement between the calculated and measured EPR parameters for both radicals has been achieved; g-tensors, hyperfine coupling constants (hfcc) and Mulliken spin densities have been correlated to changes in geometries, hydrogen bond networks and electrostatic environment, with the aim of understanding the influence of the protein surroundings on EPR properties. In addition, the present calculations demonstrate, for VP, the formation of a neutral tryptophan radical, hydrogen bonded to the nearby E243, via a stepwise electron and proton transfer with earlier involvement of a short-lived tryptophan cationic species. Instead, for W164Y, the QM/MM dynamics simulation shows that the tyrosine oxidation proceeds via a concerted electron and proton transfer and is accompanied by a significant reorganization of residues and water molecules surrounding the tyrosyl radical.
Description:21 páginas, 12 figuras -- PAGS nrs. 5078-5098
Publisher version (URL):http://dx.doi.org/10.1039/C0CP02151B
Appears in Collections:(CIB) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.