DSpace

Digital.CSIC > Recursos Naturales > Centro de Estudios Avanzados de Blanes (CEAB) > (CEAB) Artículos >

Share

EndNote

Impact

Links

Closed Access item Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe

Authors:Carrera, Guillem
Fernández, P.
Grimalt, Joan O.
Ventura, Marc
Camarero, Lluís
Catalán, Jordi
Nickus, Ulrike
Thies, Hansjörg
Psenner, Roland
Issue Date:2002
Publisher:American Chemical Society
Citation:Environmental Science and Technology 36 : 2581-2588 (2002)
Abstract:Bulk deposition samples were taken near three mountain lakes located in the Pyrenees (Estany Redó), Alps (Gossenköllesee), and Caledonian Mountains (Øvre Neådalsvatn) for evaluation of the atmospheric deposition load of organochlorine compounds (OC), namely, polychlorobiphenyls (PCBs), hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), and endosulfans, in the remote European high mountain areas. The compounds of present use in agriculture, namely, endosulfans and γ-HCH, exhibit large differences in mean deposition fluxes between the three sites. They occur in large amounts in Estany Redó (340 and 430 ng m-2 month-1 for endosulfans and γ-HCH, respectively), reflecting the impact of agricultural activities in southern Europe. This lake showed also the highest proportion of the more labile endosulfan isomers (α and β = 82%) whereas only the most recalcitrant species, endosulfan sulfate, was found in Øvre Neådalsvatn. In contrast, the OC whose use is now banned exhibit a more uniform geographic distribution with deposition fluxes of 31−40, 30−100, and 1.4−15 ng m-2 month-1 for α-HCH, PCBs, and HCB. Both compounds of present and past use exhibit a clear seasonal pattern, with higher deposition in the warm periods, which is consistent with enhanced volatilization at higher temperatures. In the case of the agricultural pesticides it may also reflect higher use during application periods. The OC distributions in the atmospheric deposition of the three sites are rather uniform and highly enriched in compounds with volatilities larger than 0.0032 Pa. However, more than 90% of these compounds are not retained in the lake waters or sediments. Comparison of OC composition in atmospheric and sedimentary deposition evidences a selective trapping of the less volatile compounds. Trapping efficiencies increase at decreasing air temperatures of the lacustrine systems.
Description:8 páginas, 5 figuras, 1 tabla.
Publisher version (URL):http://dx.doi.org/10.1021/es0102585
URI:http://hdl.handle.net/10261/44810
ISSN:0013-936X
E-ISSNmetadata.dc.identifier.doi = DOI:1520-5851
Appears in Collections:(CEAB) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.