English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/44316
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Climate and CO2 saturation in an alpine lake throughout the Holocene

AuthorsCatalán, Jordi; Pla, Sergi; García, J.; Camarero, Lluís
Issue Date2009
PublisherAmerican Society of Limnology and Oceanography
CitationLimnology and Oceanography 54(6) : 2542-2552 (2009)
AbstractThis study shows that diatom sediment records can be used to investigate the long-term inorganic carbon dynamics in oligotrophic and poorly acid-buffered lakes. Using a training set of 115 high-mountain lakes in the Pyrenees, we found that both alkalinity and potential hydrogen (pH) independently explained some of the variability in diatom assemblages. Transfer functions for both variables were developed and applied to a Holocene record from Lake Redon and CO2 changes calculated. CO2 saturation broadly followed alkalinity, which in turn was related to summer and autumn air-temperature fluctuations. In general, warmer climate during the ice-free period led to higher supersaturation, due to increased alkalinity, which facilitated retention of CO2 from respiration, and decreased primary production (assessed by diatom fluxes). Only during the early Holocene, there were periods of extreme undersaturation, corresponding to cold periods of low alkalinity (,20 microequivalents per liter [meq L21]), and suggesting carbon limitation of primary production. The winter and spring climate, which determines the ice cover duration, appears to be relevant for CO2 saturation only during periods when the organic-matter content of the sediments was low (,22%). Longer periods of ice cover led to lower lake CO2 saturation, suggesting that the ice cover influence on internal nutrient loading may regulate lake productivity fluctuations under low allocthonous nutrient and organic-matter inputs. Alkalinity ,20 meq L21 and sediment organic matter ,22% appear as critical thresholds in the way lake CO2 levels respond to climate fluctuations.
Description11 páginas, 7 figuras, 1 tabla.
Publisher version (URL)http://hdl.handle.net/2117/7821
Appears in Collections:(CEAB) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.