Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/43949
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review
Title

Enhancement of antiferromagnetic coupling in magnetic multilayers by low energy ion beam substrate nanopatterning

AuthorsQuirós, Carlos CSIC ORCID; Peverini, L.; Zárate, L.; Alija, Alejandro CSIC ORCID; Díaz, Javier; Vélez, María CSIC ORCID; Rodríguez-Rodríguez, G. CSIC ORCID; Fauth, François; Ziegler, E.; Alameda, J. M. CSIC
Issue Date2009
PublisherInstitute of Physics Publishing
CitationJournal of Physics: Condensed Matter 21(22): 224024 (2009)
AbstractIon beam irradiation has been shown to be an interesting tool for tailoring the magnetic properties of thin films and multilayers. The modified properties include magnetic anisotropy, interlayer exchange coupling, exchange bias, magnetic domain structure and magnetization reversal. In this work, new results are shown concerning the enhancement, by one order of magnitude, of the antiferromagnetic coupling strength in amorphous CoSi/Si multilayers by irradiating Si(100) substrates with 1 keV Ar+ ions. The ion beam exposure induces an increase of the substrate roughness, from 0.07 to 0.88 nm, which enhances antiferromagnetic coupling in the magnetic multilayers grown on top. One possible mechanism governing this enhancement is discussed, related to the formation of magnetic/non-magnetic regions where dipolar interactions could stabilize the antiferromagnetic alignment. The presence of non-magnetic regions is suggested by the observed trend to superparamagnetism, and is expected since the Curie temperature of the amorphous CoSi alloy used is slightly above but very close to room temperature. Accordingly, small fluctuations in the local composition, leading to an enrichment of Si, would produce non-magnetic regions enabling dipolar interactions to take place. Furthermore, the ion beam induced increase of roughness makes surface diffusion of the atoms arriving at the sample difficult, favoring the formation of local non-magnetic inhomogeneities. Finally, the role of other possible mechanisms to enhance antiferromagnetic coupling is also briefly discussed.
Publisher version (URL)http://dx.doi.org/10.1088/0953-8984/21/22/224024
URIhttp://hdl.handle.net/10261/43949
DOI10.1088/0953-8984/21/22/224024
ISSN0953-8984
E-ISSN1361-648X
Appears in Collections:(CINN) Artículos
(INCAR) Artículos




Files in This Item:
File Description SizeFormat
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

SCOPUSTM   
Citations

5
checked on Apr 9, 2024

WEB OF SCIENCETM
Citations

5
checked on Feb 23, 2024

Page view(s)

357
checked on Apr 17, 2024

Download(s)

123
checked on Apr 17, 2024

Google ScholarTM

Check

Altmetric

Altmetric


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.