English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/43262
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Título

Functional analysis beyond enrichment: Non-redundant reciprocal linkage of genes and biological terms

AutorFontanillo, Celia ; Nogales-Cadenas, Rubén; Pascual-Montano, Alberto; De Las Rivas, Javier
Fecha de publicación2011
EditorPublic Library of Science
CitaciónPLoS ONE 6(9): e24289 (2011)
ResumenFunctional analysis of large sets of genes and proteins is becoming more and more necessary with the increase of experimental biomolecular data at omic-scale. Enrichment analysis is by far the most popular available methodology to derive functional implications of sets of cooperating genes. The problem with these techniques relies in the redundancy of resulting information, that in most cases generate lots of trivial results with high risk to mask the reality of key biological events. We present and describe a computational method, called GeneTerm Linker, that filters and links enriched output data identifying sets of associated genes and terms, producing metagroups of coherent biological significance. The method uses fuzzy reciprocal linkage between genes and terms to unravel their functional convergence and associations. The algorithm is tested with a small set of well known interacting proteins from yeast and with a large collection of reference sets from three heterogeneous resources: multiprotein complexes (CORUM), cellular pathways (SGD) and human diseases (OMIM). Statistical Precision, Recall and balanced F-score are calculated showing robust results, even when different levels of random noise are included in the test sets. Although we could not find an equivalent method, we present a comparative analysis with a widely used method that combines enrichment and functional annotation clustering. A web application to use the method here proposed is provided at http://gtlinker.cnb.csic.es.
Versión del editorhttp://dx.doi.org/10.1371/journal.pone.0024289
URIhttp://hdl.handle.net/10261/43262
DOI10.1371/journal.pone.0024289
ISSN1932-6203
Aparece en las colecciones: (IBMCC) Artículos
(CNB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Functional analysis.pdf1,84 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.