Please use this identifier to cite or link to this item:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Structural analysis of the PsbQ protein of photosystem II by Fourier transform infrared and circular dichroic spectroscopy and by bioinformatic methods

AuthorsBalsera, Mónica CSIC ORCID ; Arellano, Juan B. CSIC ORCID ; Gutiérrez, José R.; Heredia, Pedro; Revuelta Doval, José Luis CSIC ORCID; De Las Rivas, Javier
Phtosystem II
FTIR spectroscopy
CD spectroscopy
Issue DateFeb-2003
PublisherAmerican Chemical Society
CitationBiochemistry 2003, 42, 1000-1007
AbstractThe structure of PsbQ, one of the three main extrinsic proteins associated with the oxygen-evolving complex (OEC) of higher plants and green algae, is examined by Fourier transform infrared (FTIR) and circular dichroic (CD) spectroscopy and by computational structural prediction methods. This protein, together with two other lumenally bound extrinsic proteins, PsbO and PsbP, is essential for the stability and full activity of the OEC in plants. The FTIR spectra obtained in both H2O and D2O suggest a mainly alpha-helix structure on the basis of the relative areas of the constituents of the amide I and I' bands. The FTIR quantitative analyses indicate that PsbQ contains about 53% alpha-helix, 7% turns, 14% nonordered structure, and 24% beta-strand plus other beta-type extended structures. CD analyses indicate that PsbQ is a mainly alpha-helix protein (about 64%), presenting a small percentage assigned to beta-strand (approximate to 7%) and a larger amount assigned to turns and nonregular structures (approximate to29%). Independent of the spectroscopic analyses, computational methods for protein structure prediction of PsbQ were utilized. First, a multiple alignment of 12 sequences of PsbQ was obtained after an extensive search in the public databases for protein and EST sequences. Based on this alignment, computational prediction of the secondary structure and the solvent accessibility suggest the presence of two different structural domains in PsbQ: a major C-terminal domain containing four a-helices and a minor N-terminal domain with a poorly defined secondary structure enriched in proline and glycine residues. The search for PsbQ analogues by fold recognition methods, not based on the secondary structure, also indicates that PsbQ is a four alpha-helix protein, most probably folding as an up-down bundle. The results obtained by both the spectroscopic and computational methods are in agreement, all indicating that PsbQ is mainly an (x protein, and show the value of using both smethodologies for protein structure investigation.
Publisher version (URL)
Appears in Collections:(IRNASA) Artículos

Files in This Item:
File Description SizeFormat
Presentación1.gif259,87 kBGIFThumbnail
Show full item record
Review this work


checked on May 22, 2022


checked on May 20, 2022

Page view(s)

checked on May 23, 2022


checked on May 23, 2022

Google ScholarTM




WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.