DSpace

Digital.CSIC > Ciencias Agrarias > Instituto de Recursos Naturales y Agrobiología Sevilla (IRNAS) > (IRNAS) Artículos >

Share

EndNote

Links

Closed Access item The STT3a subunit isoform of the arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress.

Authors:Koiwa, Ray A.
Hasegawa, Paul M.
Mendoza, Imelda
Pardo, José M.
Issue Date:Oct-2003
Publisher:American Society of Plant Biologists
Citation:Plant Cell 15 (10): 2273-2284 (2003).
Abstract:Arabidopsis stt3a-1 and stt3a-2 mutations cause NaCl/osmotic sensitivity that is characterized by reduced cell division in the root meristem. Sequence comparison of the STT3a gene identified a yeast ortholog, STT3, which encodes an essential subunit of the oligosaccharyltransferase complex that is involved in protein N-glycosylation. NaCl induces the unfolded protein response in the endoplasmic reticulum (ER) and cell cycle arrest in root tip cells of stt3a seedlings, as determined by expression profiling of ER stress–responsive chaperone (BiP-GUS) and cell division (CycB1;1-GUS) genes, respectively. Together, these results indicate that plant salt stress adaptation involves ER stress signal regulation of cell cycle progression. Interestingly, a mutation (stt3b-1) in another Arabidopsis STT3 isogene (STT3b) does not cause NaCl sensitivity. However, the stt3a-1 stt3b-1 double mutation is gametophytic lethal. Apparently, STT3a and STT3b have overlapping and essential functions in plant growth and developmental processes, but the pivotal and specific protein glycosylation that is a necessary for recovery from the unfolded protein response and for cell cycle progression during salt/osmotic stress recovery is associated uniquely with the function of the STT3a isoform.
Publisher version (URL):DOI: 10.1105/tpc.013862
URI:http://hdl.handle.net/10261/37946
ISSN:0140-4651
Appears in Collections:(IRNAS) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.