Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/34920
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Determination of Kinetic Equations of Alkaline Activation of Blast Furnace Slag by Means of Calorimetric Data

AutorFernández-Jiménez, Ana CSIC ORCID ; Puertas, Francisca CSIC ORCID; Arteaga Iriarte, Ángel CSIC
Palabras claveAlkaline activation
Portland cement
Fecha de publicación1998
EditorAkadémiai Kiadó (Budapest)
CitaciónJournal of Thermal Analysis and Calorimetry 52(3): 945-955(1998)
Resumen[EN]The alkaline activation of blast furnace slag promotes the formation of new cement materials. These materials have many advantages over ordinary Portland cement, including high strength, low production cost and good durability. However, many aspects of the chemistry of alkaline activated slags are not yet very well understood. Some authors consider that these processes occur through a heterogeneous reaction, and that they can be governed by three mechanisms: a) nucleation and growth of the hydrated phase; b) phase boundary interactions and c) any diffusion process though the layer of hydration products. The aim of this paper was to determine the mechanism explaining the early reaction of alkaline activation of a blast furnace slag through the use of calorimetric data. A granulated blast furnace slag from Avilés (Spain) with a specific surface of 4450 cm2> g-1 was used. The alkaline activators used were NaOH, Na2CO3 and a mix of waterglass (Na2SiO3·nH2O and NaOH. The solution concentrations were constant (4% Na2O with respect to the slag mass). The solutions were basic (pH 11-13). The mixes had a constant solution/slag ratio of 0.4. The thermal evolution of the mixes was monitored by conduction calorimetry. The test time was variable, until a rate of heat evolution equal to or less than 0.3 kJ kg-1 h-1 was attained. The working temperature was 25°C. The degree of hydration (α) was determined by means of the heat of hydration after the induction period. The law governing the course of the reaction changes at a certain degree of hydration. From a generally accepted equation, the values of α at which the changes are produced were determined. These values of α depend on the nature of the alkaline activator. Nevertheless, for high values of α, the alkaline activation of slag occurs by a diffusion process.
Versión del editorhttp://dx.doi.org/10.1023/A:1010172204297
URIhttp://hdl.handle.net/10261/34920
DOI10.1023/A:1010172204297
ISSN1388-6150
E-ISSN1572-8943
Aparece en las colecciones: (IETCC) Artículos

Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

87
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

78
checked on 24-feb-2024

Page view(s)

340
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.