English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/30570
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Revisiting trilateration for robot localization

AuthorsThomas, Federico ; Ros, Lluís
KeywordsCayley-menger determinants
Error analysis
Numerical conditioning
Robot localization
Issue Date2005
PublisherInstitute of Electrical and Electronics Engineers
CitationIEEE Transactions on Robotics 21(1): 93-101 (2005)
AbstractLocating a robot from its distances, or range measurements, to three other known points or stations is a common operation, known as trilateration. This problem has been traditionally solved either by algebraic or numerical methods. An approach that avoids the direct algebrization of the problem is proposed here. Using constructive geometric arguments, a coordinate-free formula containing a small number of Cayley-Menger determinants is derived. This formulation accommodates a more thorough investigation of the effects caused by all possible sources of error, including round-off errors, for the first time in this context. New formulas for the variance and bias of the unknown robot location estimation, due to station location and range measurements errors, are derived and analyzed. They are proved to be more tractable compared with previous ones, because all their terms have geometric meaning, allowing a simple analysis of their asymptotic behavior near singularities.
Publisher version (URL)http://dx.doi.org/10.1109/TRO.2004.833793
Appears in Collections:(IRII) Artículos
Files in This Item:
File Description SizeFormat 
doc1.pdf1,1 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.