English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/30441
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Experimental methodology for modeling water diffusion transport in a PEMFC stack with respect to membrane temperature and resistance

AuthorsHusar, Attila ; Serra, Maria ; Riera, Jordi
Issue Date2008
CitationFuel Cells Science & Technology: (2008)
AbstractThis work proposes an experimental methodology for modeling water diffusion transport in a PEMFC, which is applied to a commercially available fuel cell stack. The effective water vapor diffusion coefficient and its dynamical variation for the stack under no load conditions will be determined for the purpose of isolating the transfer of water across the 5 layer MEA (which include the two gas diffusion layers the two catalysts layers and the membrane) in relation to temperature and membrane resistance. This coefficient is dependent on the material properties of the components in the fuel cell, as well as on the membrane temperature and water content. The dynamics of the membrane temperature and water content will be established experimentally. The controlled variables in this experiment are the water vapor partial pressures at the inlets and the temperature of the fuel cell. Experimental procedure is to independently vary the water vapor partial pressures and fuel cell temperature to obtain the water transport across the membrane, membrane resistance, and total resistance. The experimental setup for this study is based on a 21 cell PEMFC stack with a forced flow open cathode. An environmental chamber controls the fuel cell temperature and the inlet dew point temperature of the cathode reactant. The anode reactant inlet water vapor partial pressure is maintained by a membrane based humidifier which is controlled with a dew point sensor. The measured variables are the outlet dew point temperatures, membrane resistance through continual high frequency electrochemical impedance spectroscopy (EIS), and total resistance through full frequency spectrum EIS at steady state conditions. The study determines the in situ effective diffusion coefficient and membrane resistance from 10ºC to 70ºC and 10% to 100% relative humidity. The dynamics of the membrane temperature and water content will be used to determine the movement of water in the 5 layer MEA.
DescriptionPresentado al Fuel Cells Science & Technology: Scientific Advances in Fuel Cell Systems celebrado en Copenague del 8 al 9 de octubre de 2008.
URIhttp://hdl.handle.net/10261/30441
Appears in Collections:(IRII) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.