Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/30106
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorGarcía, Vanesa M.-
dc.contributor.authorLlorca, Jordi-
dc.contributor.authorSerra, Maria-
dc.contributor.authorRiera, Jordi-
dc.date.accessioned2010-12-16T08:32:33Z-
dc.date.available2010-12-16T08:32:33Z-
dc.date.issued2008-
dc.identifier.citationFuel Cells Science & Technology: (2008)-
dc.identifier.urihttp://hdl.handle.net/10261/30106-
dc.descriptionPresentado al Fuel Cells Science & Technology: Scientific Advances in Fuel Cell Systems celebrado en Copenague del 8 al 9 de octubre de 2008.-
dc.description.abstractEthanol is a promising source of hydrogen as it is a renewable source when obtained from biomass, and hence, catalytic steam reforming of ethanol to produce hydrogen is acquiring increasing interest. The catalytic aspects of the ethanol reforming have been extensively studied giving different possibilities. However, the research of design and control for the ethanol reformers in real applications is in the beginning. These aspects are addressed in this work, and the application of interest is for a PEMFC, which at the same time feeds a variable charge. The main objective of this work is to obtain a dynamic model of a catalytic steam reforming reactor based on detailed kinetic experimental data over well-defined samples. This model will be a basic tool in the process of designing the tubular reactor and its control system, taking into account the operation temperatures. The model is based on the coupling of mass and energy balance equations and calculates the concentration and temperature profiles along the reactor and as a function of time. It considers the volumetric flow rate variation over the tubular reactor, and the heat exchange. The influence of the volume discretisation is analysed. The model developed corresponds to one new ethanol steam reformer (pathway?) carried out in three separated stages. A first stage, where ethanol dehydrogenation into acetaldehyde and hydrogen over an appropriate catalyst occurs, followed by the reforming of acetaldehyde over the cobalt catalyst. Finally, a third stage can be introduced after the reforming step for a specific water gas shift module at lower temperature in order to eliminate minute amounts of CO resulting from the reforming step over the cobalt catalyst. The simulation results for ethanol conversion were found to be in accordance with the experimental data obtained at various operating conditions. This validates the simulation model.-
dc.description.sponsorshipThis work was supported by the project 'Avances en el modelo y diseño de controladores para sistemas basados en pila de combustible PEM' (4800).-
dc.language.isoeng-
dc.rightsclosedAccess-
dc.titleModeling of a three-stage low temperature ethanol steam reforming reactor for fuel cell applications-
dc.typecomunicación de congreso-
dc.description.peerreviewedPeer Reviewed-
dc.type.coarhttp://purl.org/coar/resource_type/c_5794es_ES
item.openairetypecomunicación de congreso-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
Aparece en las colecciones: (IRII) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

302
checked on 22-abr-2024

Download(s)

54
checked on 22-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.