English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/29365
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Failure to relax negative supercoiling of DNA is a primary cause of mitotic hyper-recombination in topoisomerase-deficient yeast cells

AuthorsTrigueros, Sonia; Roca, Joaquim
Issue Date31-Jul-2002
PublisherAmerican Society for Biochemistry and Molecular Biology
CitationJournal of Biological Chemistry 277(40): 37207-37211 (2002)
AbstractIn the yeast Saccharomyces cerevisiae, DNA topoisomerases I and II can functionally substitute for each other in removing positive and negative DNA supercoils. Yeast Delta top1 top2(ts) mutants grow slowly and present structural instability in the genome; over half of the rDNA repeats are excised in the form of extrachromosomal rings, and small circular minichromosomes strongly multimerize. Because these traits can be reverted by the extrachromosomal expression of either eukaryotic topoisomerase I or II, their origin is attributed to the persistence of unconstrained DNA supercoiling. Here, we examine whether the expression of the Escherichia coli topA gene, which encodes the bacterial topoisomerase I that removes only negative supercoils, compensates the phenotype of Delta top1 top2(ts) yeast cells. We found that Delta top1 top2(ts) mutants expressing E. coli topoisomerase I grow faster and do not manifest rDNA excision and minichromosome multimerization. Furthermore, the recombination frequency in repeated DNA sequences, which is increased by nearly two orders of magnitude in Delta top1 top2(ts) mutants relative to the parental TOP+ cells, is restored to normal levels when the bacterial topoisomerase is expressed. These results indicate that the suppression of mitotic hyper-recombination caused by eukaryotic topoisomerases I and II is effected mainly by the relaxation of negative rather than positive supercoils; they also highlight the potential of unconstrained negative supercoiling to promote homologous recombination.
Description5 pages, 7 figures.-- PMID: 12151411 [PubMed].-- Printed version published Oct 4, 2002.
Publisher version (URL)http://dx.doi.org/10.1074/jbc.M206663200
URIhttp://hdl.handle.net/10261/29365
DOI10.1074/jbc.M206663200
ISSN0021-9258
E-ISSN1083-351X
Appears in Collections:(IDAEA) Artículos
(IBMB) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.