English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/27391
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 10 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar bibText (RIS)Exportar csv (RIS)
Título

Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize

Autor Sánchez Marcos, Ignacio; Zapata Ruiz, Nery ; Faci González, José María
Palabras clave Maize
Alfalfa
Uniformity
Water loss
Soil water
Pluviometer
FDR
Fecha de publicación oct-2010
EditorElsevier
Citación Sánchez I, Zapata N, Faci JM. Combined effect of technical, meteorological and agronomical factors on solid-set sprinkler irrigation: I. Irrigation performance and soil water recharge in alfalfa and maize. Agricultural Water Management 97 (10): 1571-1581 (2010)
ResumenIn this work, maize (Zea mays L.) and alfalfa (Medicago sativa L.) were irrigated in two adjoining plots with the same sprinkler solid-set system. Irrigation was evaluated between four sprinklers in the central position within each plot, above the canopy with pluviometers and in the soil with a FDR probe. Maize and alfalfa were simultaneously irrigated under the same operational and technical conditions during two seasons: in 2005, the solid-set irrigation system layout was rectangular, 15 m between sprinklers along the irrigation line and 15 m among lines (R15 × 15), and the seasonal irrigation applied according to the crop evapotranspiration (ETc); in 2006, the solid-set layout was R18 × 15 and the seasonal irrigation was around 30% lower than the ETc. The irrigation depth above the canopies (IDC) and the soil water recharge after irrigation (RW) were monitored using a 3 m × 3 m grid (25 points in 2005 and in 30 points in 2006). For maize, RW was assessed both in the lines of plants (CL) and between the lines (BCL). The average values of IDC were similar between crops during both seasons but the uniformity (CUC) of the IDC noticeably depended on the crop: the differences were greater between crops than between sprinklers spacings (R15 × 15 and R18 × 15). The CUC of IDC, the RW and the CUC of RW were greater for alfalfa than for maize. The CUC of IDC was greater than the CUC of RW for both crops. The RW was significantly related with the IDC throughout the irrigation season for alfalfa. The correlation was weaker for maize, with important differences between positions and between growth stages. At the beginning of the season, the RW significantly correlated with the IDC, both in the CL and BCL positions. However, the correlation weakened when the maize grew, especially in the CL, because the maize plants redistributed the water. The results show that the height and canopy architecture of the crop must be considered in the analysis of the sprinkler water distribution as factors influencing the irrigation performance.
Descripción 47 Pag., 7 Fig., 4 Tabl. The definitive version is available at: http://www.sciencedirect.com/science/journal/03783774
Versión del editorhttp://dx.doi.org/10.1016/j.agwat.2010.05.012
URI http://hdl.handle.net/10261/27391
DOI10.1016/j.agwat.2010.05.012
ISSN0378-3774
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ZapataN_AgrWatManag_2010-1.pdf489,82 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.