Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/272152
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Soil management and compost amendment are the main drivers of carbon sequestration in rainfed olive trees agroecosystems: An evaluation of chemical and biological markers

AutorPanettieri, Marco CSIC ORCID ; Moreno Sánchez, Beatriz CSIC ORCID; Lozano de Sosa, Laura CSIC ORCID; Benítez León, Emilio CSIC ORCID; Madejón, Engracia CSIC ORCID
Palabras claveSolid state NMR spectra
Genes encoding enzymes
Enzyme activities
Mediterranean climate
Alperujo compost
Biosolid compost
Fecha de publicaciónjul-2022
EditorElsevier
CitaciónCatena (214): 106258 (2022)
ResumenTraditional olive groves are considered at high risk of erosion and desertification due to low organic matter inputs and scarce vegetation cover coupled to highly intensity tillage, leading to a further decrease in soil organic carbon contents. In a context of climate change, carbon sequestration through waste management in the framework of a circular economy becomes of primary importance for rainfed Mediterranean agricultural soils. To unveil the mechanisms of carbon sequestration in those agroecosystems, we evaluated the effect of the application of two composts (olive waste “alperujo” and biosolid) at two different doses coupled to the sustainable soil management allowing spontaneous vegetation growing on the soil surface. With this aim, solid state nuclear magnetic resonance was used to trace the evolution of the chemical composition of compost-derived and soil-derived organic matter. Successively, the activity of soil microbial community after the compost addition was monitored by measuring two enzymatic activities (β-glucosidase and dehydrogenase) and soil CO2 respiration. Lastly, the adaptation of microbial communities was quantified using the genes encoding soil enzymes associated with C cycling -glucosidase and laccase-like multicopper oxidases. The results of this study show that biosolid compost has a higher potential for C storage at mid-term (24 to 30 months after first application) than alperujo compost, yielding up to 50% net C sequestration in the topsoil in addition to the compost-derived C applied. We attribute these results to biosolid compost chemical composition, closer to that of the native organic matter, which led to a less abrupt adaptation of soil microbial functioning (lower flushes of water soluble C, lower number of copies of genes encoding enzymatic activities) to the new C source, if compared to alperujo compost. The results encourage the reduction of soil perturbation and the use of organic amendments instead of mineral fertilizers to increase carbon storage and improve sustainability of olive groves in the Mediterranean agroecosystems.
Descripción11 páginas.- 10 figuras.- 2 tablas.- referencias.- Supplementary data to this article can be found online a https://doi.org/10.1016/j.catena.2022.106258
Versión del editorhttp://dx.doi.org/10.1016/j.catena.2022.106258
URIhttp://hdl.handle.net/10261/272152
DOI10.1016/j.catena.2022.106258
ISSN0341-8162
Aparece en las colecciones: (IRNAS) Artículos
(ICA) Artículos
(EEZ) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf59,24 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

12
checked on 11-abr-2024

WEB OF SCIENCETM
Citations

9
checked on 26-feb-2024

Page view(s)

114
checked on 22-abr-2024

Download(s)

14
checked on 22-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.