English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/26783
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 5 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Comparison of regression techniques for mapping fog frequency: application to the Aragón region (northeast Spain)
Autor : Vicente Serrano, Sergio M. ; López-Moreno, Juan I. ; Vega-Rodríguez, M. I.; Beguería, Santiago ; Cuadrat, José María
Palabras clave : Fog frequency
Fog mapping
Ordinary least squares regression
General additive models
Fecha de publicación : may-2010
Editor: John Wiley & Sons
Citación : Vicente SM, López-Moreno JI, Vega-Rodríguez MI, Beguería S, Cuadrat JM. Comparison of regression techniques for mapping fog frequency: application to the Aragón region (northeast Spain). International Journal of Climatology 30(6): 935 - 945 (2010)
Resumen: We compare different spatial interpolation techniques in mapping the monthly frequency of fogs in the Aragón region (northeast Spain). The local and spatially complex nature of the fogs makes them more difficult to map than other climatic variables such as precipitation and temperature. We found clear seasonal differences in the quality of the obtained maps. The localized nature of spring and summer fogs, mainly restricted to valley bottoms in mountainous areas, gives rise to several limitations. The modelling of fog frequency is more complex than that of other climate variables; to improve the model predictions, it is necessary to consider topographic variables that simulate the terrain structure. Moreover, the highly complex nature of the relationship between fog frequency and terrain means that simple linear models perform poorly in accounting for the role of geographic and topographic variables in determining the spatial distribution of fog frequency. The inclusion of non-linear relationships between fog frequency and terrain variables in the models following a general additive model (GAM) procedure leads to an improvement in model performance because the flexibility of GAMs enables the inclusion of non-linear relationships and the generation of response-curve shapes that detail the exact relationship between the dependent variable and predictors throughout the entire range of the variable.
Descripción : 28 páginas,, 4 tablas, 7 figuras. The definitive version is available at: http://www3.interscience.wiley.com/journal/4735/home
Versión del editor: http://dx.doi.org/10.1002/joc.1935
URI : http://hdl.handle.net/10261/26783
DOI: 10.1002/joc.1935
ISSN: 0899-8418 (Print)
1097-0088 (Online)
Aparece en las colecciones: (EEAD) Artículos
(IPE) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BegueriaS_IntJClimatol_2010.pdf349,25 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.