Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/251572
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Genome downsizing after polyploidy: mechanisms, rates and selection pressures

AutorWang, Xiaotong; Morton, Joseph A.; Pellicer, Jaume CSIC ORCID; Leitch, Ilia J.; Leitch, Andrew R.
Palabras claveGenome downsizing
Whole-genome duplications
DNA repair
DNA loss rate
Selection pressures
Fecha de publicación2-jun-2021
EditorJohn Wiley & Sons
CitaciónPlant Journal 107, 4: 1003- 1015 (2021)
ResumenAn analysis of over 10 000 plant genome sizes (GSs) indicates that most species have smaller genomes than expected given the incidence of polyploidy in their ancestries, suggesting selection for genome downsizing. However, comparing ancestral GS with the incidence of ancestral polyploidy suggests that the rate of DNA loss following polyploidy is likely to have been very low (4-70 Mb/million years, 4-482 bp/generation). This poses a problem. How might such small DNA losses be visible to selection, overcome the power of genetic drift and drive genome downsizing? Here we explore that problem, focussing on the role that double-strand break (DSB) repair pathways (non-homologous end joining and homologous recombination) may have played. We also explore two hypotheses that could explain how selection might favour genome downsizing following polyploidy: to reduce (i) nitrogen (N) and phosphate (P) costs associated with nucleic acid synthesis in the nucleus and the transcriptome and (ii) the impact of scaling effects of GS on cell size, which influences CO2 uptake and water loss. We explore the hypothesis that losses of DNA must be fastest in early polyploid generations. Alternatively, if DNA loss is a more continuous process over evolutionary time, then we propose it is a byproduct of selection elsewhere, such as limiting the damaging activity of repetitive DNA. If so, then the impact of GS on photosynthesis, water use efficiency and/or nutrient costs at the nucleus level may be emergent properties, which have advantages, but not ones that could have been selected for over generational timescales.
Versión del editorhttps://doi.org/10.1111/tpj.15363
URIhttp://hdl.handle.net/10261/251572
DOIhttps://doi.org/10.1111/tpj.15363
Identificadoresdoi: https://doi.org/10.1111/tpj.15363
issn: 0960-7412
Aparece en las colecciones: (IBB) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
tpj.15363.pdf1,69 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

203
checked on 15-abr-2024

Download(s)

221
checked on 15-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons