English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/236311
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

A Post-Quantum Biometric Template Protection Scheme Based on Learning Parity With Noise (LPN) Commitments

AuthorsArjona, Rosario ; Baturone, Iluminada
Issue Date2020
PublisherInstitute of Electrical and Electronics Engineers
CitationIEEE Access, 8 : 182355 - 182365 (2020)
AbstractBiometric recognition has the potential to authenticate individuals by an intrinsic link between the individual and their physical, physiological and/or behavioral characteristics. This leads a higher security level than the authentication solely based on knowledge or possession. One of the reasons why biometrics is not completely accepted is the lack of trust in the storage of biometric templates in external servers. Biometric data are sensitive data which should be protected as is contemplated in the data protection regulation of many countries. In this work, we propose the use of biometric Learning Parity With Noise (LPN) commitments as template protection scheme. To the best of our knowledge, this is the first proposal for biometric template protection based on the LPN problem (that is, the difficulty of decoding random linear codes), which offers post-quantum security. Biometric features are compared in the protected domain. Irreversibility, revocability, and unlinkability properties are satisfied as well as resistance to False Acceptance Rate (FAR), cross-matching, Stolen Token, and similarity-based attacks. A recognition accuracy with a 0% FAR is achieved, because user-specific secret keys are employed, and the False Rejection Ratio (FRR) can be adjusted depending on a threshold to preserve the accuracy of the unprotected scheme in the Stolen Token scenario. A good performance in terms of execution time, template storage and operation complexity is obtained for security levels at least of 80 bits. The proposed scheme is employed in a dual-factor authentication protocol from the literature to illustrate how it provides security using authentication and database (cloud) servers that can be malicious. The proposed LPN-based protected scheme can be applied to any biometric trait represented by binary features and any matching score based on Hamming or Jaccard distances. In particular, experimental results are included of a practical finger vein-based recognition system implemented in Matlab
Publisher version (URL)https://doi.org/10.1109/ACCESS.2020.3028703
URIhttp://hdl.handle.net/10261/236311
DOI10.1109/ACCESS.2020.3028703
Appears in Collections:(IMSE-CNM) Artículos
Files in This Item:
File Description SizeFormat 
baturone.pdf4,17 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.