Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/227684
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling

AutorHornero, Alberto CSIC ORCID; Hernández-Clemente, Rocío; North, Peter R. J.; Beck, P. S. A.; Boscia, Donato; Navas Cortés, Juan Antonio ; Zarco-Tejada, Pablo J. CSIC ORCID
Palabras claveSentinel-2
Hyperspectral
Xylella fastidiosa
Temporal change
Radiative transfer
Fecha de publicaciónene-2020
EditorElsevier
CitaciónRemote Sensing of Environment 236: 111480 (2020)
ResumenOutbreaks of Xylella fastidiosa (Xf) in Europe generate considerable economic and environmental damage, and this plant pest continues to spread. Detecting and monitoring the spatio-temporal dynamics of the disease symptoms caused by Xf at a large scale is key to curtailing its expansion and mitigating its impacts. Here, we combined 3-D radiative transfer modelling (3D-RTM), which accounts for the seasonal background variations, with passive optical satellite data to assess the spatio-temporal dynamics of Xf infections in olive orchards. We developed a 3D-RTM approach to predict Xf infection incidence in olive orchards, integrating airborne hyperspectral imagery and freely available Sentinel-2 satellite data with radiative transfer modelling and field observations. Sentinel-2A time series data collected over a two-year period were used to assess the temporal trends in Xf-infected olive orchards in the Apulia region of southern Italy. Hyperspectral images spanning the same two-year period were used for validation, along with field surveys; their high resolution also enabled the extraction of soil spectrum variations required by the 3D-RTM to account for canopy background effect. Temporal changes were validated with more than 3000 trees from 16 orchards covering a range of disease severity (DS) and disease incidence (DI) levels. Among the wide range of structural and physiological vegetation indices evaluated from Sentinel-2 imagery, the temporal variation of the Atmospherically Resistant Vegetation Index (ARVI) and Optimized Soil-Adjusted Vegetation Index (OSAVI) showed superior performance for DS and DI estimation (r2VALUES>0.7, p < 0.001). When seasonal understory changes were accounted for using modelling methods, the error of DI prediction was reduced 3-fold. Thus, we conclude that the retrieval of DI through model inversion and Sentinel-2 imagery can form the basis for operational vegetation damage monitoring worldwide. Our study highlight the value of interpreting temporal variations in model retrievals to detect anomalies in vegetation health.
Versión del editorhttp://doi.org/10.1016/j.rse.2019.111480
URIhttp://hdl.handle.net/10261/227684
DOI10.1016/j.rse.2019.111480
Identificadoresdoi: 10.1016/j.rse.2019.111480
issn: 0034-4257
Aparece en las colecciones: (IAS) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
paper_monitoring_Xf_RSE.pdf2,3 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

50
checked on 17-abr-2024

WEB OF SCIENCETM
Citations

48
checked on 24-feb-2024

Page view(s)

107
checked on 23-abr-2024

Download(s)

117
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.