English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/21360
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Energetics of formation of TiGa3As4 and TiGa3P4 intermediate band materials

AuthorsPalacios Clemente, Pablo ; Wahnón Benarroch, Perla ; Pizzinato, Sara; Conesa Cegarra, José Carlos
Issue Date5-Jan-2006
PublisherAmerican Institute of Physics
CitationJournal of Chemical Physics 124(1): 014711 (2006)
AbstractUsing density functional theory quantum methods, total energy values and vibrational properties have been computed, and thermodynamic properties evaluated, for Ti-substituted GaAs and GaP, proposed as candidates for intermediate band photovoltaic cells. The calculations predict that the formation of these materials from the binary compounds implies an increase in total energy (that is ascribed largely to the change in coordination undergone by Ti, from six-fold to four-fold), and thus phase separation rather than mixed compound formation would be favored. However, the mentioned increase is not larger (for the arsenide case it is actually smaller) than that predicted for Mn-substituted GaAs, a material which has been experimentally made, and therefore the obtention of these Ti-substituted materials is expected to be feasible as well. Vibrational and disorder entropy contributions to the formation free energy of the ternary compounds have been also computed; they compensate partially for the total energy increase, and indicate that the thermodynamic feasibility of the materials synthesis improves for low Ti concentrations and high temperature conditions.
Description5 pages, 5 figures, 1 table.
Publisher version (URL)http://dx.doi.org/10.1063/1.2140695
Appears in Collections:(ICP) Artículos
Files in This Item:
File Description SizeFormat 
GetPDFServlet.pdf149,65 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.