Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/212958
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Nanostructure stabilization by low-temperature dopant pinning in multiferroic BiFeO3-based thin films produced by aqueous chemical solution deposition

AutorGumiel, Carlos; Jardiel, Teresa CSIC ORCID ; Calatayud, David G. CSIC ORCID ; Vranken, Thomas; Van Bael, Marlies K.; Hardy, An; Calzada, M. L. CSIC ORCID; Jiménez, Ricardo CSIC ORCID; García-Hernández, Mar CSIC ORCID ; Mompean, F. J. CSIC ORCID; Caballero Cuesta, Amador CSIC ORCID; Peiteado, Marco CSIC ORCID
Palabras claveBiFeO3 material
Nanostructur stabilization
Fecha de publicación24-feb-2020
EditorRoyal Society of Chemistry (UK)
CitaciónJournal of Materials Chemistry. C, Materials for optical and electronic devices
Resumen[EN] The metastability impediment which usually prevents the obtaining of a phase-pure BiFeO3 material can be dramatically stressed when taking the system to the thin film configuration. In order to preserve the stoichiometry, the films need to be processed at low temperatures and hence the solid-state diffusion processes which usually govern the microstructural evolution in bulk cannot be expected to also rule the development of the functional films. All these circumstances were presumed when exploring the possibilities of an aqueous solution–gel process plus spin-coating deposition method to reproduce, in thin film dimensions, the excellent multiferroic properties that have been previously observed with an optimized rare-earth and Ti4+-codoped BiFeO3 bulk composition. The experiments indicate high reliability for the tested methodology, allowing for the obtaining of homogeneous dense films at temperatures as low as 600 1C and with a tunable multiferroic response depending on the formulated rare-earth (Sm or Nd). Thorough structural characterization of the films reveals that despite the low temperature processing restrictions, effective microstructural control is achieved at the nanoscale, which is attributed to effective retention (pinning) of the dopants inside the perovskite structure of BiFeO3.
Versión del editorhttps://doi.org/10.1039/C9TC05912A
URIhttp://hdl.handle.net/10261/212958
ISSN2050-7526
Aparece en las colecciones: (ICV) Artículos
(ICMM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Gumiel_Nanostructure_Jr_Materials_Chemistry_C_2020.pdfArtículo principal versión publicada5,97 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

149
checked on 23-abr-2024

Download(s)

126
checked on 23-abr-2024

Google ScholarTM

Check


Este item está licenciado bajo una Licencia Creative Commons Creative Commons