English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/212059
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

An application of excess lead-210 analysis for the study of fine sediment connectivity in a Mediterranean mountain basin with badlands, the Vallcebre research catchments

AuthorsMoreno de las Heras, Mariano; Gallart, Francesc; Latron, J.; Martínez-Carreras, Núria ; Ferrer, Laura; Estrany, Joan
Issue Date24-Apr-2017
AbstractAnalysis of sediment dynamics in Mediterranean environments is fundamental to basin management, particularly for mountain catchments with badlands, which affect water bodies and freshwater ecosystems. Connectivity has emerged in Environmental and Earth Sciences as an evolution of the sediment delivery concept, providing a useful framework for understanding how sediments are transferred between geomorphic zones of the catchment. This study explores the feasibility of excess lead-210 (210Pbex) to analyse sediment connectivity in a 4-km2 Mediterranean mountain basin with badlands (the Vallcebre research catchments, Eastern Pyrenees) by applying simple 210Pbex mass-balance models for hypothesis generation and experimental testing in the field. Badland surfaces in the basin are weathered by freezing during the winter and are further eroded in summer by the effect of highintensity storms. The eroded sediments may remain deposited within the catchment streams from months to years. Application of 210Pbex balance models in our basin proposes: (i) a saw-tooth seasonal pattern of badland surface 210Pbex activities (increasing from October to May, and depleted in summer) and (ii) a downstream increase in sediment activity due to fallout lead-210 accumulation in streambed sediment deposits. Both deposited and suspended sediments collected at the Vallcebre catchments showed, in general, low sediment 210Pbex concentrations, illustrating their fresh-rock origin at the badland sites, but also hampering the understanding of sediment 210Pbex patterns due to high measurement uncertainty (particularly for sediments with d50>20m) and to strong dependence on sediment sampling methodology. Suspended sediment 210Pbex activity reproduced the simulated seasonal activity patterns for the badland surfaces. Contrary to the in-stream transit increases of sediment 210Pbex activity that were predicted by our model simulations, fallout lead-210 concentrations in the suspended sediments decreased towards the basin outlet, suggesting that fine sediment flushing by flooding prevented 210Pbex accumulation in the coarser streambed sediment deposits. These results indicate a high fine-sediment connectivity between the badlands, streams and basin outlet of the Vallcebre catchments, as well as the sequestration and fast transmission of fallout lead-210 by the finest and most dynamic fraction of sediments.
URIhttp://hdl.handle.net/10261/212059
Appears in Collections:(IDAEA) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
672055.pdf38,06 kBUnknownView/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.