Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/206001
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

UAV imaging of a martian brine analogue environment in a fluvio-aeolian setting

AutorBhardwaj, Anshuman; Sam, Lydia; Martín-Torres, F. J.; Zorzano, María Paz CSIC ORCID ; Ramírez Luque, Juan Antonio
Palabras claveUnmanned Aerial Vehicle (UAV)
Photogrammetry
Salt flat
Geomorphometry
Analogue research
Fecha de publicación9-sep-2019
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing 11 (18): 2104 (2019)
ResumenUnderstanding extraterrestrial environments and landforms through remote sensing and terrestrial analogy has gained momentum in recent years due to advances in remote sensing platforms, sensors, and computing efficiency. The seasonal brines of the largest salt plateau on Earth in Salar de Uyuni (Bolivian Altiplano) have been inadequately studied for their localized hydrodynamics and the regolith volume transport across the freshwater-brine mixing zones. These brines have recently been projected as a new analogue site for the proposed Martian brines, such as recurring slope lineae (RSL) and slope streaks. The Martian brines have been postulated to be the result of ongoing deliquescence-based salt-hydrology processes on contemporary Mars, similar to the studied Salar de Uyuni brines. As part of a field-site campaign during the cold and dry season in the latter half of August 2017, we deployed an unmanned aerial vehicle (UAV) at two sites of the Salar de Uyuni to perform detailed terrain mapping and geomorphometry. We generated high-resolution (2 cm/pixel) photogrammetric digital elevation models (DEMs) for observing and quantifying short-term terrain changes within the brines and their surroundings. The achieved co-registration for the temporal DEMs was considerably high, from which precise inferences regarding the terrain dynamics were derived. The observed average rate of bottom surface elevation change for brines was ~1.02 mm/day, with localized signs of erosion and deposition. Additionally, we observed short-term changes in the adjacent geomorphology and salt cracks. We conclude that the transferred regolith volume via such brines can be extremely low, well within the resolution limits of the remote sensors that are currently orbiting Mars, thereby making it difficult to resolve the topographic relief and terrain perturbations that are produced by such flows on Mars. Thus, the absence of observable erosion and deposition features within or around most of the proposed Martian RSL and slope streaks cannot be used to dismiss the possibility of fluidized flow within these features.
Versión del editorhttp://dx.doi.org/10.3390/rs11182104
URIhttp://hdl.handle.net/10261/206001
DOI10.3390/rs11182104
Identificadoresdoi: 10.3390/rs11182104
issn: 2072-4292
Aparece en las colecciones: (IACT) Artículos
(CAB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Remote Sensing 11 2104.pdf6,93 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

6
checked on 18-abr-2024

WEB OF SCIENCETM
Citations

4
checked on 26-feb-2024

Page view(s)

194
checked on 23-abr-2024

Download(s)

217
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons