Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/205641
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

A Flexible Autonomous Robotic Observatory Infrastructure for Bentho-Pelagic Monitoring

AutorAguzzi, Jacopo CSIC ORCID ; Albiez, Jan; Flögel, Sascha; Godø, Olav Rune; Grimsbø, Endre; Marini, Simone; Pfannkuche, Olaf; Rodriguez, Erik; Thomsen, Laurenz; Torkelsen, Terje; Valencia, Javier; López-Vázquez, Vanesa; Wehde, Henning; Zhang, Guosong
Palabras claveBenthic and pelagic monitoring
Image processing
Acoustics
Crawlers
Docking station
Cabled observatories
Fuel cells
Ecosystem component classification
Fecha de publicaciónmar-2020
EditorMultidisciplinary Digital Publishing Institute
CitaciónSensors 20(6): 1614 (2020)
ResumenThis paper presents the technological developments and the policy contexts for the project “Autonomous Robotic Sea-Floor Infrastructure for Bentho-Pelagic Monitoring” (ARIM). The development is based on the national experience with robotic component technologies that are combined and merged into a new product for autonomous and integrated ecological deep-sea monitoring. Traditional monitoring is often vessel-based and thus resource demanding. It is economically unviable to fulfill the current policy for ecosystem monitoring with traditional approaches. Thus, this project developed platforms for bentho-pelagic monitoring using an arrangement of crawler and stationary platforms at the Lofoten-Vesterålen (LoVe) observatory network (Norway). Visual and acoustic imaging along with standard oceanographic sensors have been combined to support advanced and continuous spatial-temporal monitoring near cold water coral mounds. Just as important is the automatic processing techniques under development that have been implemented to allow species (or categories of species) quantification (i.e., tracking and classification). At the same time, real-time outboard processed three-dimensional (3D) laser scanning has been implemented to increase mission autonomy capability, delivering quantifiable information on habitat features (i.e., for seascape approaches). The first version of platform autonomy has already been tested under controlled conditions with a tethered crawler exploring the vicinity of a cabled stationary instrumented garage. Our vision is that elimination of the tether in combination with inductive battery recharge trough fuel cell technology will facilitate self-sustained long-term autonomous operations over large areas, serving not only the needs of science, but also sub-sea industries like subsea oil and gas, and mining
DescripciónSpecial issue 2019 Selected Papers from the IMEKO TC-19 International Workshop on Metrology for the Sea.-- 17 pages, 9 figures, 2 tables, supplementary material http://www.mdpi.com/1424-8220/20/6/1614/s1
Versión del editorhttps://doi.org/10.3390/s20061614
URIhttp://hdl.handle.net/10261/205641
DOI10.3390/s20061614
Identificadoresdoi: 10.3390/s20061614
issn: 1424-8220
e-issn: 1424-8220
Aparece en las colecciones: (ICM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Aguzzi_et_al_2020.pdf3,96 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

2
checked on 16-abr-2024

SCOPUSTM   
Citations

16
checked on 11-abr-2024

WEB OF SCIENCETM
Citations

15
checked on 23-feb-2024

Page view(s)

231
checked on 16-abr-2024

Download(s)

174
checked on 16-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons