Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/205085
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Study of the hydrogen escape rate at Mars during Martian years 28 and 29 from comparisons between SPICAM/Mars express observations and GCM-LMD simulations

AutorChaufray, Jean-Yves; González-Galindo, F. CSIC ORCID ; López-Valverde, M. A. CSIC ORCID ; Forget, François; Quémerais, E; Bertaux, J.-L; Montmessin, Franck; Chaffin, M; Schneider, Nicholas; Clarke, J.T; Leblanc, F.; Modolo, Ronan; Yelle, R.V.
Fecha de publicación1-nov-2019
EditorAcademic Press
CitaciónIcarus 353: 113498 (2021)
ResumenWe have simulated the 3D atomic hydrogen density in the Martian upper atmosphere and associated Jeans escape rate during Martian years 28 and 29. The coronal Lyman-α brightness is computed using a 3D radiative transfer model which accounts for the monthly average hydrogen density for these two years and is compared to a large set of observations by Mars Express/SPICAM. The simulated brightness is generally in good agreement with the observations for Ls <230° and Ls >330° for Martian year 28 and Ls < 270°, Ls > 340° for Martian year 29, but the model strongly underestimated the brightness for 230 < Ls < 330° for Martian year 28 and 270 < Ls < 340° for Martian year 29. In these simulations the transport of water vapor contributes to the production of hydrogen at high altitudes during southern summer. A possible explanation for the model discrepancy is an underestimate of this water transport, associated with an underestimate of the hygropause altitude and/or an underestimate of the supersaturation of the mesosphere. Considering this discrepancy, we estimate the hydrogen escape rate during these two Martian years to vary by almost two orders of magnitude, between ~10 to 6 × 10 s (equivalent to a global layer of water ~33 to 2000 mm deep every billion years), in agreement with the seasonal variations estimated directly from the fit of the SPICAM observations during the Martian year 28 by Chaffin et al. (2014). Our analysis suggests that episodic dust storms and associated enhancements at high altitude near perihelion are a major factor in the H escape estimates averaged over one martian year or longer periods, but the accumulated water lost at this rate for 4 billion years is much lower than the amount of water needed to form the flow channels observed on Mars.© 2019 Elsevier Inc.
Versión del editorhttp://dx.doi.org/10.1016/j.icarus.2019.113498
URIhttp://hdl.handle.net/10261/205085
DOI10.1016/j.icarus.2019.113498
Identificadoresdoi: 10.1016/j.icarus.2019.113498
issn: 1090-2643
Aparece en las colecciones: (IAA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

16
checked on 06-abr-2024

WEB OF SCIENCETM
Citations

17
checked on 22-feb-2024

Page view(s)

225
checked on 18-abr-2024

Download(s)

37
checked on 18-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.