Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/20181
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray

AuthorsSuárez, M. Belén CSIC
Issue DateOct-2009
PublisherBioMed Central
CitationBMC Microbiology 9: 217 (2009)
Abstract[Background]: It has recently been shown that the Trichoderma fungal species used for biocontrol of plant diseases are capable of interacting with plant roots directly, behaving as symbiotic microorganisms. With a view to providing further information at transcriptomic level about the early response of Trichoderma to a host plant, we developed a high-density oligonucleotide (HDO) microarray encompassing 14,081 Expressed Sequence Tag (EST)-based transcripts from eight Trichoderma spp. and 9,121 genome-derived transcripts of T. reesei, and we have used this microarray to examine the gene expression of T. harzianum either alone or in the presence of tomato plants, chitin, or glucose.
[Results]: Global microarray analysis revealed 1,617 probe sets showing differential expression in T. harzianum mycelia under at least one of the culture conditions tested as compared with one another. Hierarchical clustering and heat map representation showed that the expression patterns obtained in glucose medium clustered separately from the expression patterns observed in the presence of tomato plants and chitin. Annotations using the Blast2GO suite identified 85 of the 257 transcripts whose probe sets afforded up-regulated expression in response to tomato plants. Some of these transcripts were predicted to encode proteins related to Trichodermahost (fungus or plant) associations, such as Sm1/Elp1 protein, proteases P6281 and PRA1, enchochitinase CHIT42, or QID74 protein, although previously uncharacterized genes were also identified, including those responsible for the possible biosynthesis of nitric oxide, xenobiotic detoxification, mycelium development, or those related to the formation of infection structures in plant tissues.
[Conclusion]: The effectiveness of the Trichoderma HDO microarray to detect different gene responses under different growth conditions in the fungus T. harzianum strongly indicates that this tool should be useful for further assays that include different stages of plant colonization, as well as for expression studies in other Trichoderma spp. represented on it. Using this microarray, we have been able to define a number of genes probably involved in the transcriptional response of T. harzianum within the first hours of contact with tomato plant roots, which may provide new insights into the mechanisms and roles of this fungus in the Trichoderma-plant interaction.
Description14 pages, 4 figures, 7 additional files.-- et al.
Publisher version (URL)http://dx.doi.org/10.1186/1471-2180-9-217
URIhttp://hdl.handle.net/10261/20181
DOI10.1186/1471-2180-9-217
ISSN1471-2180
Appears in Collections:(IMB) Artículos




Files in This Item:
File Description SizeFormat
1471-2180-9-217.pdf2,32 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

PubMed Central
Citations

22
checked on May 18, 2022

SCOPUSTM   
Citations

49
checked on May 24, 2022

WEB OF SCIENCETM
Citations

47
checked on May 20, 2022

Page view(s)

396
checked on May 25, 2022

Download(s)

297
checked on May 25, 2022

Google ScholarTM

Check

Altmetric

Dimensions


Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.