English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/19834
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Frequency-dependent phase coherence for noise suppression in seismic array data

AuthorsSchimmel, Martin ; Gallart Muset, Josep
Phase stack
Seismic noise
Analytic signal
Issue DateMar-2007
PublisherAmerican Geophysical Union
CitationJournal of Geophysical Research - Part B - Solid Earth 112(B4): B04303 (2007)
AbstractWe introduce a coherence measure for seismic signal enhancement through incoherent noise attenuation. Our processing tool is designed for densely spaced arrays and identifies signals by their coherent appearance. The approach is based on the determination of the lateral phase coherence as function of distance, time, frequency, and slowness. The coherence is derived from the local phases of neighboring stations which we obtain from analytic signals through the S-transform. The coherence is used to attenuate incoherent components in the time-frequency representations of the seismic records. No waveforms are averaged in our approach to maintain local amplitude information. This way we construct a data-adaptive filter which enhances coherent signals using the frequency-dependent and slowness-dependent phase coherence. We explain the method and show its abilities and limitations with theoretical test data. Furthermore, we have selected an ocean bottom seismometer (OBS) record section from NW-Spain and a teleseismic event registered at Spanish broadband stations to show the filter performance on real array data. Incoherent noise has been attenuated in all cases to enable a less ambiguous signal detection. In our last example, the filter also reveals weak conversions/reflections at the 410-km and 660-km discontinuities which are hardly visible in the unfiltered input data.
Publisher version (URL)http://www.agu.org/journals/jb/jb0704/2006JB004680/
Appears in Collections:(ICTJA) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.