English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/19762
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Microbial mats on the Orkney Islands revisited: microenvironment and microbial community composition

AuthorsWieland, Andrea; Kühl, Michael; McGowan, L.; Fourçans, Aude; Duran, Robert; Caumette, P.; García de Oteyza, Tirso; Grimalt, Joan O. ; Solé, Antoni; Esteve, Isabel; Herbert, R. A.
KeywordsMicroenvironment
Microbial community composition
Sediments
Orkney Islands beaches
Purple sulfur bacteria
Issue Date14-Aug-2003
PublisherSpringer
CitationMicrobial Ecology 46(4): 371-390 (2003)
AbstractThe microenvironment and community composition of microbial mats developing on beaches in Scapa Flow (Orkney Islands) were investigated. Analysis of characteristic biomarkers (major fatty acids, hydrocarbons, alcohols, and alkenones) revealed the presence of different groups of bacteria and microalgae in mats from Waulkmill and Swanbister beach, including diatoms, Haptophyceae, cyanobacteria, and sulfate-reducing bacteria. These analyses also indicated the presence of methanogens, especially in Swanbister beach mats, and therefore a possible role of methanogenesis for the carbon cycle of these sediments. High amounts of algal lipids and slightly higher numbers (genera, abundances) of cyanobacteria were found in Waulkmill Bay mats. However, overall only a few genera and low numbers of unicellular and filamentous cyanobacteria were present in mats from Waulkmill and Swanbister beach, as deduced from CLSM (confocal laser scanning microscopy) analysis. Spectral scalar irradiance measurements with fiber-optic microprobes indicated a pronounced heterogeneity concerning zonation and density of mainly anoxygenic phototrophs in Swanbister Bay mats. By microsensor and T-RFLP (terminal restriction fragment length polymorphism) analysis in Swanbister beach mats, the depth distribution of different populations of purple and sulfate-reducing bacteria could be related to the microenvironmental conditions. Oxygen, but also sulfide and other (inorganic and organic) sulfur compounds, seems to play an important role in the stratification and diversity of these two major bacterial groups involved in sulfur cycling in Swanbister beach mats.
Description20 pages, 9 figures, 3 tables.-- PMID: 12904912 [PubMed].-- Printed version published Nov 2003.
Publisher version (URL)http://dx.doi.org/10.1007/s00248-002-0108-2
URIhttp://hdl.handle.net/10261/19762
DOI10.1007/s00248-002-0108-2
ISSN0095-3628
E-ISSN1432-184X
Appears in Collections:(IDAEA) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.