Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/190477
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Structural and biochemical insights into an engineered high-redox potential laccase overproduced in Aspergillus

AutorSalas, Felipe de CSIC ORCID ; Cañadas, Rubén; Santiago, Gerard; Virseda-Jerez, Alicia; Vind, Jesper; Gentili, P.; Martínez, Ángel T. CSIC ORCID ; Guallar, Victor; Muñoz, Inés G.; Camarero, Susana CSIC ORCID
Palabras claveFungal laccase
Aspergillus oryzae
Crystal structures
SAXS
Kinetics
Circular dichroism
Fecha de publicación7-sep-2019
EditorElsevier
CitaciónInternational Journal of Biological Macromolecules 141: 855-867 (2019)
ResumenFungal laccases have great potential as biocatalysts oxidizing a variety of aromatic compounds using oxygen as co-substrate. Here, the crystal structure of 7D5 laccase (PDB 6H5Y), developed in Saccharomyces cerevisiae and overproduced in Aspergillus oryzae, is compared with that of the wild type produced by basidiomycete PM1 (Coriolopsis sp.), PDB 5ANH. SAXS showed both enzymes form monomers in solution, 7D5 laccase with a more oblate geometric structure due to heavier and more heterogeneous glycosylation. The enzyme presents superior catalytic constants towards all tested substrates, with no significant change in optimal pH or redox potential. It shows noticeable high catalytic efficiency with ABTS and dimethyl-4-phenylenediamine, 7 and 32 times better than the wild type, respectively. Computational simulations demonstrated a more favorable binding and electron transfer from the substrate to the T1 copper due to the introduced mutations. PM1 laccase is exceptionally stable to thermal inactivation (t1/2 70 °C = 1.2 h). Yet, both enzymes display outstanding structural robustness at high temperature. They keep folded during 2 h at 100 °C though, thereafter, 7D5 laccase unfolds faster. Rigidification of certain loops due to the mutations added on the protein surface would diminish the capability to absorb temperature fluctuations leading to earlier protein unfolding.
Descripción13 p.-7 fig.-2 tab
Versión del editorhttps://doi.org/10.1016/j.ijbiomac.2019.09.052
URIhttp://hdl.handle.net/10261/190477
DOI10.1016/j.ijbiomac.2019.09.052
ISSN0141-8130
E-ISSN1879-0003
Aparece en las colecciones: (CIB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Int J Biological Micromolecules_de Salas_2019.pdf3,38 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

18
checked on 18-abr-2024

WEB OF SCIENCETM
Citations

14
checked on 22-feb-2024

Page view(s)

315
checked on 19-abr-2024

Download(s)

64
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.