DSpace

Digital.CSIC > Recursos Naturales > Instituto Andaluz de Ciencias de la Tierra (IACT) > (IACT) Artículos >

Share

EndNote

Impact

Links

Closed Access item Life in the fast lane for protein crystallization and X-ray crystallography.

Authors:Pusey Marc, L.
LIU Zhi-Jie
Tempel, Wolfram
Praissman, Jeremy
Llin, Dawei
Wang, Bi-Cheng
Gavira Gallardo, J. A.
NG Joseph, D.
Issue Date:2005
Citation:Prog Biophys Mol Biol. 88(3): 359-86 (2005)
Abstract:The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).
Description:28 pages, 7 figures, 1 table.
Publisher version (URL):http://dx.doi.org/10.1016/j.pbiomolbio.2004.07.011
URI:http://hdl.handle.net/10261/18792
ISSN:0079-6107
???metadata.dc.identifier.doi???:10.1016/j.pbiomolbio.2004.07.011
Appears in Collections:(IACT) Artículos

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.