Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/186133
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorTartaj, Pedro-
dc.contributor.authorAmarilla, José Manuel-
dc.contributor.authorVázquez Santos, Beatriz-
dc.date.accessioned2019-07-15T11:55:31Z-
dc.date.available2019-07-15T11:55:31Z-
dc.date.issued2016-02-09-
dc.identifierdoi: 10.1021/acs.chemmater.5b05018-
dc.identifierissn: 0897-4756-
dc.identifiere-issn: 1520-5002-
dc.identifier.citationChemistry of Materials 28(3): 986-993 (2016)-
dc.identifier.urihttp://hdl.handle.net/10261/186133-
dc.description.abstractThe improvement of properties through strict morphology control often requires the use of difficult to scale up synthesis routes. Thus, a compromise between scalability and morphology control is required to partially exploit the advantages of this control in materials functionality. Here, we show that a scalable and continuous route (aerosol route) is able to produce Li3VO4 colloidal aggregates with different morphology (spherical and platelet-like) using easy to handle economic precursors (V2O5, LiOH, and LiNO3 in stoichiometric amounts). The key for these differences in morphology resides on controlling the nature of the intermediate stages that can occur during particle formation in aerosol synthesis. We also show that the electrochemical response of Li3VO4 is strongly dependent on morphology. Thus, optimization of morphology allows building anodes that to our knowledge outperform other reported Li3VO4 anodes and even compete with most of the reported Li3VO4/C composites at adequate high rates (2–8 A/g). Finally, we have developed a simple and scalable coating protocol (suspensions with solid concentrations of 100 g/L are used) that additionally improves the long-term stability of the optimized anodes. Combination of the two scalable methods leads to Li3VO4 anodes that operating at a safe cutoff voltage of 0.2 V can retain a high capacity (280 mAh/g) with excellent coulumbic efficiency (>99.9%), even after 500 cycles at a competitive rate (2 A/g discharge–charge).-
dc.publisherAmerican Chemical Society-
dc.rightsclosedAccess-
dc.titleAerosol-assisted synthesis of colloidal aggregates with different morphology: toward the electrochemical optimization of Li3VO4 battery anodes using scalable routes-
dc.typeartículo-
dc.identifier.doi10.1021/acs.chemmater.5b05018-
dc.relation.publisherversionhttps://doi.org/10.1021/acs.chemmater.5b05018-
dc.date.updated2019-07-15T11:55:31Z-
dc.language.rfc3066eng-
dc.relation.csic-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeartículo-
item.grantfulltextnone-
Aparece en las colecciones: (ICMM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

41
checked on 04-abr-2024

WEB OF SCIENCETM
Citations

40
checked on 27-feb-2024

Page view(s)

238
checked on 18-abr-2024

Download(s)

31
checked on 18-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.